



**61<sup>st</sup> Edition** 



# Content

|         |                                                                                                 | Page                                     |     |
|---------|-------------------------------------------------------------------------------------------------|------------------------------------------|-----|
|         | and its 10 Commandments                                                                         | 3                                        |     |
| History |                                                                                                 |                                          |     |
|         | Milestones of PLATIT's history                                                                  | 4                                        |     |
| Basics  | Coating Systems in 39 Countries of the World                                                    | 12                                       |     |
| Dasics  | Coating Advantages - Basic Applications Fields - Flexible Coating - Integrated Coating          | 14                                       |     |
| Coating | g Equipment                                                                                     | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |     |
|         | MoDeC <sup>®</sup> Modular Dedicated Coating                                                    | 18                                       |     |
|         | $\pi$ - The $\pi$ Advantages - Virtual Shutter - Tube Shutter                                   | 20                                       |     |
|         | LGD <sup>®</sup> : LAteral Glow Discharge                                                       | 22                                       |     |
|         | TCO AUS                                                                                         | 24                                       |     |
|         |                                                                                                 | - 28                                     |     |
|         | FL'OT                                                                                           | 30                                       |     |
|         | <u>R</u> 7537                                                                                   | 32                                       |     |
|         | Carousels and Substrate Holders                                                                 | 36                                       |     |
|         | Loading Capacities                                                                              | 40                                       |     |
| -       | Customized Units                                                                                | 42                                       |     |
| Тигпке  | y Coating Systems                                                                               | 10                                       | e . |
|         | Turnkey Solutions                                                                               | 48<br>51                                 |     |
|         | Stripping - Decoating<br>Cleaning Units                                                         | 51                                       |     |
|         | CleX <sup>®</sup> : Modular Holder System for Cleaning and Stripping                            | 56<br>56                                 |     |
|         | Microstructuring - Edge Preparation                                                             | 58                                       |     |
| 14 A    | Brushing - Micro Blasting - Drag Grinding - Stream Grinding - Magnet Finishing                  | 62                                       |     |
|         | Cutting Edge Shape and Measurement                                                              | 67                                       | 5   |
|         | Quality Control - PQCS                                                                          | 69                                       |     |
|         | Equipment for Special Handling and Treatment                                                    | 72                                       |     |
|         | Coating System Layout - Connection Data                                                         | 74                                       |     |
| Coating |                                                                                                 |                                          |     |
|         | Generations, Structures, Main Coatings                                                          | 76                                       |     |
|         | Coating Properties - Main Application Fields                                                    | 80                                       |     |
|         | Coating Guide - Coating Spectrum                                                                | 82                                       |     |
|         | Coating Types                                                                                   | 84                                       |     |
|         | Basic Data and Coating Features                                                                 | 90                                       |     |
|         | Applications of Coatings                                                                        | and the second second                    |     |
|         | Conventional Coatings                                                                           | 94                                       |     |
|         | Nanocomposites<br>TipleCoatings <sup>3®</sup>                                                   | 96<br>100                                |     |
|         | BUADCoatings <sup>4®</sup>                                                                      | 100                                      | -   |
|         | Oxide and Oxynitride                                                                            | 110                                      |     |
|         | SCIL <sup>®</sup> - Sputtered Coating Induced by LGD <sup>®</sup> - High Performance Sputtering | 112                                      |     |
|         | LACS <sup>®</sup> - Lateral ARC and Central Sputtering - Hybrid Coating                         | 114                                      |     |
|         | Dedicated Coatings                                                                              | 118                                      |     |
|         | DLC - Diamond Like Coatings                                                                     | 122                                      |     |
| Why In  | tegrate Coating in Small & Medium Sized Enterprises?                                            | 130                                      |     |
|         | vide Service                                                                                    | 7                                        |     |
|         | Service Concept & Packages                                                                      | 132                                      |     |
|         | PLATIT Augmented Reality Support                                                                | 134                                      |     |
|         | Cathode Exchange Centers                                                                        | 136                                      |     |
|         | Training Programs                                                                               | 138                                      |     |
|         | PLATIT Worldwide                                                                                | 139                                      |     |
|         |                                                                                                 |                                          |     |



The Spirit of a Family

# **PLATIT and Its 10 Commandments**

60 years of experience in coating business give us the competence to develop, produce and install genuine Turnkey Coating Systems.

The PLATIT Support Center of PLATIT in Selzach / SO, Switzerland Operational Headquarters & Project Engineering & R&D & Test Center & Logistics & Marketing

## **PLATIT AG**

Eichholzstrasse 9 CH-2545 Selzach / SO **Switzerland** 

 Phone:
 +41 (32) 544 62 00

 Fax:
 +41 (32) 544 62 20

 E-Mail:
 info@platit.com

 Web:
 www.platit.com



**PLATIT CCS Building Vaulruz / FR, Switzerland** Customized coating systems according to special demands

# The 10 Commandments for PLATIT

**Core competence:** Development and production of high-tech PVD coating equipment & coatings

- 1. Independence from large enterprises Main marketing targets: SME companies
- 2. Headquarters in Switzerland Tradition, image, infrastructure, financing and tax system
- 3. Worldwide distributed intelligence

Global cooperation with institutes, suppliers, coaters and users

- 4. Balanced distribution of sales More than 500 installations in 38 countries
- 5. Flat, lean company structure No hierarchies, focus on development, not on logistics
- 6. Team spirit Innovation and performance count, not origins and ties





PLATIT a.s. Building in Sumperk, Czech Republic Standard machines of the Series 27

- 7. Blue Ocean Strategy Products and markets ahead of and without competition
  - min. 1 new coating every year
  - new coating unit every 2nd year
- 8. Win-Win with customers Not discount but price/performance decides competitiveness
- 9. No job coating Avoiding competition between customers and PLATIT
- **10. Turnkey Systems** For integration into the production

# **Milestones of PLATIT's History**

2002

PLATIT was founded by W. Blösch AG in 1992. The Blösch AG is member of the BCI Blösch Corporation Group, started in 1947 as a supplier to the Swiss watch industry. It is now a powerhouse for high-tech funcional and decorative coatings.



Walter Blösch Founder of W. Blösch AG

Vilab 1995 — BCI: Innovative coatings for

> the watch industry: Hard antireflective coating – on sapphire watch glass Color coating on watch dial –

Special effects on moonphase disc

Anti-allergical hard coating on stainless steel watch parts

Start of the PLATIT project.

1993·



2001 -

Acquisition of Vilab AG in 1997.

Vilab PCT (Profitcenter Technology)

develops special coatings for the

optical and watch industry.

New construction for the production of hard coatings.



1957-

1947 -

Liss AG is founded for the production

1987 -

Liss AG is founded for the production of watch dials and jewelry. First plant for the electroplating of precious metals is built.

## BLOSCH

W. BLÖSCH AG is founded by Walter Blösch for heavy gold plating of watch cases and jewelry.





**-80** 

PLATIT establishes PIVOT in a joint venture with SHM in the

Czech Republic.

Research in nano-

technology.

Development of turnkey

PLATIT AG was founded. Assembly of first PLATIT hard

coating equipment.

unit.

systems for flexible coating, based on the *i*PL50 coating

structured coatings leads to the introduction of the revolutionary  $\pi^{80}$ 

coating unit with LARC®



2007

200th PLATIT installation.

Triple Coatings<sup>3®</sup>

2006

**nACV/c**<sup>®</sup> 1st generation DLC-coatings based on Nanocomposites

π300

2005 The combination of LARC® and CERC<sup>®</sup> technology allows enormously high productivity and flexibility.

2004



100th PLATIT installation.

LATH

# PL1001 COMPACT

Introduction of the plug & play workhorse for conventional coatings.

# **Developments**





380th PLATIT Installation.

Forming of **PLATIT a.s.** Sumperk, CZ by fully integrating **PICOT** into **FLATITE**.

Due to the possible upgrades for standard machines, users can participate in the benefits of the new technologies. E.g. LARC-GD-, OXI-, and DLC<sup>2</sup>-upgrades.



Sputtered Coatings Induced by





2013



π211

For DLC<sup>3</sup>-Coatings

2012

**CleX**<sup>®</sup> Modular holding system for cleaning and stripping





# **Developments**





520

520th PLATIT Installation



2018





2017

Integrating **FLANAR** S.A. into **FLATITE** 

PLION





2016



9

# **Developments**



-81

500th PLATIT Installation



ta:C

2019



LT<sup>20</sup> ultra fast decoating system

**BorCo**<sup>®</sup>



# **Milestones of PLATIT's Coatings**



# **PLATIT Coating Systems in 39 Countries of the World**



# **Europe**

- Austria
- Belarus
- Bulgaria •
- **Czech Republic**
- Denmark
- Estonia
- .

- Italy
- •
- Poland
- Russia
- Slovakia

- Slovenia
- Spain
- Sweden
- Switzerland
- United Kingdom
- France
  - Finland
- Germany
- Hungary
- Netherlands
- Norway
- Romania

## Asia

- China
- Hong Kong •
- India
- Israel
- Japan
- Pakistan •
- Philippines •
- Singapore .

# Americas

- Brazil
- Canada
- Mexico
- USA

- Thailand •
- Turkey •
- **United Arab Emirates** •

South Korea Taiwan •









# **Coating Advantages**

PLATIT develops and produces coating equipment for plasma-generating PVD (Physical Vapor Deposition). Our products are based on:

- Conventional cathodic ARC technology  $PL^{1011}$ ,  $\pi^{1511}$
- The unique LARC<sup>®</sup> technology (LAteral Rotating Cathodes)  $\pi^{111}$ ,  $\pi^{1511}$
- The unique LARC<sup>®</sup> and CERC<sup>®</sup> (CEntral Rotating Cathodes) technologies  $\pi^{411}$
- High performance sputtering technologies
  - $\pi^{\text{end}}$  SCIL<sup>®</sup>: Sputtering induced by LGD<sup>®</sup> (LAteral Glow Discharge)
  - PL<sup>211</sup> HIPIMS: High Performance Impuls Magnetron Sputtering
- LACS<sup>®</sup>: Hybrid technology  $\pi^{422}$  (LAteral Arcing with Central Sputtering)

We hold a significant number of patents related to coatings, coating technologies, and processes.

PLATIT coatings offer the highest standard of modern coating technology for tool steels (cold / hot work steel, high speed steel; HSS, HSCO, M42, ...) and tungsten carbides (WC). All work pieces can be coated with a programmable coating thickness between 1 and 18 µm. All batches are coated with high uniformity, ensuring the repeatability of the coating quality.

## Cutting

The PLATIT hard coatings reduce the abrasive, adhesive and crater wear on the tools for conventional wet, dry and high speed machining.

All carbide tipped tooling must be manufactured with brazing material that contains no cadmium and no zinc. Cadmium and zinc are not stable under the high vacuum at the coating process temperatures. Braze outgassing will ruin the strength of the joint, contaminate the tooling surface and the vacuum chamber.

## **Punching, Fine Blanking**

PLATIT technology ensures an increase in tool life through special structures and by reducing friction on punches and on fine blanking tools.

## Forming

For forming applications such as extrusion, molding, deep-drawing, coining, PLATIT hard coatings reduce friction, wear, built-up edges and striation. Repolishing of functional surfaces is recommended.

The PLATIT hard coatings increase productivity for plastic forming and forming machine components with better release and lower wear. Low roughness and excellent surface texture improve part release and influence injection forces in the mold to allow shorter cycle times. For parts with a mirror finish, repolishing after coating is recommended. Due to physical limitations, deep holes and slots are seldom coatable.

## Tribology

PLATIT hard coatings solve tribological problems with machine components that can be coated at temperatures of 200-600°C. Due to the hardness (up to 45 GPa), abrasive wear is reduced. This leads to higher reliability for dry operations, and environmentally damaging lubricants can be replaced.



# **Basic Application Fields**

# Cutting

# **Punching / Fine Blanking**





**Injection Molding** 



Tribology





# **Flexible Coating**

## **Application Oriented**

Different objects (e.g. tools) are not coated with one universal coating, but in separate batches with the optimal coating for their individual applications.

## **User Oriented**

Large and small part quantities can be coated according to the customer's specifications.

Users can create new coating brands to coat special parts for highest performance and their own marketing.

## **Highly Reproducible**

All customer-dedicated batches can be repeated with the same exact parameters and under the same conditions.

## Fast

The collection of similar pieces to be coated in one batch can be minimized. No waiting times.

## **Economical**

The system's payback is ensured even at just a few batches per day, since coating times are much shorter than with conventional units.

# **Large Volume Coating**

# **Standard Coating for All Pieces**

In industrial mass coating, different types of substrates are often coated together. While high volumes may raise profitability, coating performance often suffers. Also, process times are typically much longer than with smaller quantities.

The  $PL^{211}$ ,  $PL^{2011}$ , and  $\pi^{2511}$  units make traditional high-volume coating flexible. They offer high-quality coatings and short cycle times. Different substrate types and sizes can be mixed without sacrificing coating quality.



# **Dedicated Coating**

The  $\pi^{117}$ ,  $\pi^{417}$  units make specially tailored coatings possible and economical, even for small and medium-sized batches.



**Dedicated TiN** for milling cutters



**Dedicated TiAIN** for end mills



**Dedicated TiCN** for punches and dies



Large volume job coating load with different mixed substrates



Small batch with dedicated coating





# **Integrated Coating**

PLATIT's coating units are suitable for integration into the manufacturing process. This creates the opportunity to

- generate new coatings (such as nanocomposites) and coating brands
- reduce logistics, transport, and storage costs
- operate with own pretreatments, tool geometries and keep them confidential
- manage the quality and timeline for entire production internally
- create earnings through coating

Insourcing the coating process does not require more staff than that for logistics, packaging, shipping and cooperating with the job coater. The break-even of PLATIT coating systems is typically achieved in less than 2 years.

With the high flexibility of the PLATIT units, coatings can be applied

- for the cutting and forming tools used in production and
- for own products, including machine parts

The example below is taken from Madern B.V., Vlaardingen, NL (Madern built up the system with the predecessor of the  $\pi^{\tt TTT}$ , with  $\pi^{\tt SC}$ )



# **MoDeC<sup>®</sup>** Innovations

PLATIT's coating concept - Modular Dedicated Coating - allows the configuration of the number of cathodes, type, and position according to the coating task. MoDeC<sup>®</sup> is the driving force behind PLATIT innovations. New coatings and units are developed bearing this principle in mind.

# TTPLUS

Small coating unit with 2 LARC<sup>®</sup> + cathodes LARC<sup>®</sup> technology: LAteral Rotating Cathodes

- The new generation of the first industrial coating unit for Nanocomposite coatings
- The heart of Turnkey Coating Systems for small and medium enterprises
- Selected Triple Coatings<sup>3®</sup>
- Coatable volume: ø355 x H420 mm
- Loading with ø10mm end mills: 288 pcs
- 5 batches / day

# PL

Compact machine for machine components and tools

- 2 planar (DUO) cathodes (standard size of the PL1011)
- DC or HIPIMS sputtering with PA3D module
- TiN, CrN with sputtering
- +DLC<sup>2</sup> (SCILVIc<sup>2®</sup>) in PECVD mode
- + DLC<sup>3</sup> (ta-C)
- Coatable volume ø500 x H450 mm
- Loading with ø10mm end mills: 432 pcs
- Extremly high coating surface quality









- High volume compact unit
- The "workhorse" for coating centers
- 4 planar cathodes with ARC technology
- Conventional and selected Triple Coatings<sup>3®</sup>
- Coatable volume: ø600 x H680 mm
- Loading with ø10mm end mills: 1080 pcs





# **77** Series

PLATIT's entire product line consists of "compact" coating units. These units come in one piece, with the coating chamber in the same cabinet as the electronics. This eliminates the need of costly and time consuming on-site assembly.



- OXI option
- SCIL<sup>®</sup> option: high performance sputtering
- 3 LARC<sup>®</sup> cathodes and 1 central SCIL<sup>®</sup> cathode

- LACS<sup>®</sup> option: Simultaneous LAteral ARCing + CEntral sputtering
- For conventional and Nanocomposite coatings
- All Triple Coatings<sup>3®</sup> and OUAD Coatings<sup>4®</sup>
- Coatable volume: ø500 x H420 mm
- Loading with ø10mm end mills: 504 pcs
- 5 (up to 6) batches / day

IL ast

in 2003



# π<sup>41</sup>PLUS

Compact coating unit with highest flexibility

- π<sup>411</sup> eco is the basic machine
   3 LARC<sup>®</sup> cathodes
- Modular upgradeable with options:
- DLC<sup>2</sup> option
- π<sup>4</sup> ττυκεσ option
  - 3 LARC  $^{\mbox{\tiny B}}$  cathodes and 1 CERC  $^{\mbox{\tiny B}}$  cathode
  - high productivity with CERC<sup>®</sup> booster

π1511

Combination of LARC<sup>®</sup> and planar ARC technologies

- High volume compact unit
- 3 LARC<sup>®</sup>-XL rotating cathodes in the door
- 2 planar cathodes in the back as boosters
- All 5 cathodes can deposit simultaneously
- For conventional and Nanocomposite coatings
- Most Triple Coatings<sup>3®</sup> and QUAD Coatings<sup>4®</sup>
- Coatable volume: ø600 x H680 mm
- Loading with ø10mm end mills: 1080 pcs
- 3 batches / day

# **PLATIT** π<sup>1</sup><sup>PLUS</sup> The Startup Machine

# **General Information**

- Compact hardcoating unit
- Based on PLATIT LARC<sup>®</sup> technology (LAteral Rotating Cathodes)
- Coating on tool steels (TS) above 230 °C, high speed steels (HSS) 350 - 500 °C and on tungsten carbide (WC) between 350 - 550 °C

# **Hard Coatings**

- Monolayers, Multilayers, Nanogradients, Nanolayers, Nanocomposites, and their combinations
- Main standard coatings: AITiN<sup>2</sup>-Multilayer, nACo<sup>2®</sup>, nACRo<sup>2®</sup>, AICrN<sup>3</sup>
- Selected Triple Coatings<sup>3®</sup> available

## Hardware

- Footprint: W1890 x D1500 x H2120 mm
- Vacuum chamber with internal sizes of: W450 x D320(460) x H615 mm
- Loading volume: ø353 x H494 mm
- Coatable volume: ø353 x H420 mm
- Max. load: 100 kg
- Turbo molecular pump
- Revolutionary rotating (tubular) cathode system with 2 LARC<sup>®</sup> + cathodes:
  - LARC<sup>®</sup> target size: ø96 x 510 mm
  - Magnetic Coil Confinement (MACC) for ARC control
  - Double wall, stainless steel, water cooled chamber and cathodes
  - Changing time for skilled operator: approx. 15 min / cathode
- VIRTUAL SHUTTER<sup>®</sup> and TUBE SHUTTER<sup>®</sup>
- LGD<sup>®</sup>: LARC<sup>®</sup> Glow Discharge
- Ionic plasma cleaning:
  - etching with gas (Ar/H<sub>2</sub>); glow discharge,
  - metal ion etching (Ti, Cr)
- Pulsed BIAS supply 30 kHz (optional 350 kHz)
- Air conditioning for the electric cabinet
- Up to 6 gas channels, 5 MFC controlled
- Special dust filters for heaters (10 kW)
- Electrical connection: 3x400V, 100A external fuse 50-60 Hz, 30 kVA
- Carousel drive with high loadability (>150kg)
- Chamber preheating
- Changeable door shields
- Pulsed ARC supplies with low frequency
- LARC + cathodes



# **Electronics and Software**

- Control system with touch-screen menu driven concept
- No programming knowledge is required for control
- Data logging and real-time viewing of process parameters
- Remote diagnostics and control
- Insite operator's manual and on CD-ROM
- Enhanced operating software compatible to  $\pi^{_{ extsf{eq12}}}$

## **Optimal Cycle Times\***

- Shank tools (2  $\mu$ m): ø 10 x 70 mm, 288 pcs: 4 h
- Inserts (3 μm): ø 20 x 6 mm, 1680 pcs: 4.5 h
- Hobs (4 μm): Ø 80 x 180 mm, 20 pcs: 6 h
- \*: The cycle times can be achieved under the following conditions:
- solid carbide tools (no outgassing necessary)
- · high quality cleaning before the coating process (short etching)
- · continuous operation (pre-heated chamber)
- 2-cathode processes
- use of fast cooling (e.g. with helium, opening the chamber at 200°C)
- 5 processes / day



# $\pi$ Advantages with LARC & LARC + Technology

### LARC Technology

- Low target costs due to the cylindrical rotating cathodes
  - Large effective target surface: d \*  $\pi$  \* h
  - Highly ionized plasma
  - Target life: ~200 batches
  - Low target costs/tool: ~0.07 CHF/tool



#### Optimum adhesion

With LGD<sup>®</sup>, VIRTUAL SHUTTER<sup>®</sup>, and TUBE SHUTTER<sup>®</sup> due to:

- Burning with the magnetic field
  - to the back for fast target cleaning
  - to the substrates for deposition
- Permanent presence of pure Ti or Cr target
- LARC+: Enhanced LGD plasma cleaning efficiency

#### Programmable stoichiometry

- Due to minimum distance between 2 targets, deposition of:
  - Multi- and Nanolayers, gradient coatings
  - Without changing the unalloyed targets; Ti, Cr, Al, Al(Si), Zr
  - Nanocomposites:
    - Segregation into 2 phases, e.g. (nc-TiAIN)/(a-SiN)



## LARC+ Technology

- Additional cost reduction
  - New magnetic field system (LARC+)
  - Low frequency pulsed ARC
- Increased target life by  $\sim$  30%
- Low target costs/tool: ~0.05 CHF/tool



LARC + Very consistent
 target erosion
 LARC + : Targets at end of life

#### High deposition rate further increased with LARC + Due to:

- Chamber preheating with water
- Focused magnetic field
- Increasing of deposition rate by  $\sim$  30%

#### Comparison LARC vs LARC+ (single Ti Cathode)



21

# **LGD<sup>®</sup> and Double Shuttering**



- LARC GD<sup>®</sup> is a new patented method, that works with the LARC cathodes in combination with the VIRTUAL SHUTTER<sup>®</sup> and TUBE SHUTTER<sup>®</sup>
- LARCGD<sup>®</sup> generates a highly efficient argon etching for special substrates with difficult surfaces (e.g. hobs, mold and dies)
- The electron stream between cathodes 1 and 2 creates high ion density plasma, which "cleans" substrates, even with complicated surfaces
- Pulsing of LGD source ensures high LGD-process stability and suppresses micro-arcs (hard-arcs) generation

# **Double Shuttering**

# VIRTUAL SHUTTER®

#### Target cleaning before coating

- TUBE SHUTTER<sup>®</sup> is closed
   to protect the substrates from dust of the previous process
- ARC is burning towards the back
   VIRTUAL SHUTTER<sup>®</sup> is on
- ARC works as getter pump and substantially improves vacuum
- Target is cleaned before deposition
  without contaminating the substrates

#### Advantages of the double shutters

- · Adhesion layer is always deposited with clean targets
- Shuttering of all cathode types possible
- Simple handling, setting and maintenance of the shields and ceramic insulators
- Higher ARC current -> higher deposition rate possible (~+20-30%)



#### **Deposition** (coating)

- TUBE SHUTTER<sup>®</sup> is open
- ARC is burning towards the substrates
   VIRTUAL SHUTTER<sup>®</sup> is off
- · Smooth deposition with clean target

# The Main Coatings of the TTPLUS

# CrTiN<sup>2</sup>: For Forming

Stoichiometry: TiN - Cr/TiN-ML  $\pi^{\text{TTP-LUS}}$ : 1: Cr – 2: Ti

# **AITIN<sup>2</sup>: For Universal Use**

Stoichiometry: TiN - AI/TiN-ML  $\pi^{\text{TPLUS}}$ : 1: Al - 2: Ti

# **AICrN<sup>3®</sup>: For Dry Cutting Abrasive Materials**

Stoichiometry: CrN - Al/CrN-NL - AlCrN  $\pi^{\text{TTP-LUS}}$ : 1: Al - 2: Cr

# ALL<sup>3®</sup>- AICrTiN<sup>3®</sup>: Universal for Cutting and Forming

Stoichiometry: Cr(Ti)N - Al/CrTiN-NL - AlCrTiN  $\pi^{22PLUS}$ : 1: Al - 2: CrTi<sub>15</sub>

## nACo<sup>2®</sup>: For Universal Use, Turning, Drilling

Stoichiometry: TiN - AlTiN/SiN  $\pi^{\text{TTPLUS}}$ : 1: AlSi<sub>12</sub> - 2: Ti

# nACRo<sup>2®</sup>: For Superalloys, Milling, Hobbing

Stoichiometry: TiN - AlCrN/SiN  $\pi^{\text{TTPLUS}}$ : 1: AlSi<sub>12</sub> – 2: Cr

# TiXCo<sup>3®</sup>: For Superhard Machining, Milling, Drilling

Stoichiometry: TiN - nACo - TiSiN  $\pi^{\text{TTPLUS}}$ : 1: Al -2: TiSi<sub>20</sub>















# **PLATIT** π<sup>4</sup><sup>1</sup><sup>PLUS</sup> The High Flexibility Machine

## **General Information**

- · Compact hard coating unit
- Based on PLATIT LARC<sup>®</sup>, CERC<sup>®</sup> and SCIL<sup>®</sup> technologies LAteral Rotating Cathodes, CEntral Rotating Cathodes and Sputtered Coatings induced by LARC-GD<sup>®</sup>
- Coating on tool steels (TS) above 230 °C, high speed steels (HSS) 350 - 500 °C and on tungsten carbide (WC) between 350 - 550 °C
- Reconfigurable by the user into different cathode setups:
   A: 3 LARC<sup>®</sup> cathodes (π<sup>417</sup>eco)
   B: 3 LARC<sup>®</sup> cathodes and 1 CERC<sup>®</sup> cathode
  - C: 3 LARC<sup>®</sup> cathodes and 1 SCIL<sup>®</sup> cathode

## Coatings

- Monolayers, Multilayers, Nanogradients, Nanolayers, Nanocomposites, TripleCoatings<sup>3®</sup>, QuadCoatings<sup>4®</sup>, SCIL<sup>®</sup>-Coatings and their combinations
- Main standard coatings: AICrN<sup>3®</sup>, nACRo<sup>4®</sup>, ALL<sup>4®</sup>
- All TripleCoatings<sup>3®</sup> and QUADCoatings<sup>4®</sup>
- All SCIL<sup>®</sup> and LACS<sup>®</sup>-Coatings available

## Hardware

- Footprint: W2720 x D1721 x H2149 mm
- Vacuum chamber, internal sizes: W650 x D670 x H675 mm
- Loading volume: ø500 x H494 mm
- Coatable volume: ø500 x H420 mm
- Max. load: 265 kg
- System with turbo molecular pump
- Revolutionary rotating (tubular) cathode system with 3 LARC<sup>®</sup> / 1 CERC<sup>®</sup> cathodes:
  - Magnetic Coil Confinement (MACC) for ARC control
  - LARC<sup>®</sup>: Up to 200A ARC current
    - Changing time for skilled operator: approx. 15-30 min/cathode
  - CERC<sup>®</sup>: Up to 300A ARC current
  - SCIL<sup>®</sup>: Up to 30 kW sputtering power
- VIRTUAL SHUTTER<sup>®</sup> and TUBE SHUTTER<sup>®</sup> with door shielding
- Ionic plasma cleaning:
  - etching with gas (Ar/H<sub>2</sub>); glow discharge
- metal ion etching (Ti, Cr)
- LGD<sup>®</sup>: LARC<sup>®</sup> Glow Discharge
- Pulsed BIAS supply 30 kHz (optional 350 kHz)
- 6 (+1) gas channels, 6 MFC controlled
- Special dust filters for heaters (24 kW)
- Preheater
- Electrical connection: 3x400 V, 160 A, 50-60 Hz, 76 kVA
- Upgradeable with DLC<sup>2</sup>, CERC<sup>®</sup>, OXI, SCIL<sup>®</sup>, LACS<sup>®</sup>



## **Electronics and Software**

- New HMI (Human Machine Interface)
- · Control system with touch-screen menu driven concept
- No programming knowledge is required for control
- Data logging and real-time viewing of process parameters
- Remote diagnostics and control
- Insite operator's manual and on CD-ROM
- Enhanced operating software compatible to  $\pi^{mn}$

# **Optimal Cycle Times\***

- Shank tools (2  $\mu$ m): ø 10 x 70 mm, 504 pcs: 4 h
- Inserts (3 μm):
- ø 20 x 6 mm, 2940 pcs: 4.5 h
- Hobs (4 μm): ø 80 x 180 mm, 28 pcs: 6 h
- \* The cycle times can be achieved under the following conditions:
- solid carbide tools (no outgassing necessary)
- · high quality cleaning before the coating process (short etching)
- continuous operation (pre-heated chamber)
- 4-cathode processes
- use of fast cooling (e.g. with helium, opening the chamber at 200°C)
- 5 (up to 6) batches / day

options and to all at user's site



# **Technologies and Coatings** of Tuter

## **ARC-Evaporation**

- · High ionization degree
- · High coating density, high coating hardness
- Excellent adhesion
- High productivity
- Droplets cause rougher surface

### **ARC-Technology:** LARC<sup>®</sup>: **LAteral Rotating Cathodes**

**CEntral Rotating Cathode** 



Sputter-Technology: SCIL<sup>®</sup> : • **Sputter Coatings** Induced by LGD<sup>®</sup> LGD<sup>®</sup>: Lateral Glow Discharge

LACS

**High Performance Sputtering** 

Lower coating density and hardness

Lower ionization degree

Moderate adhesion

Lower deposition rate

SCIL<sup>®</sup>



- ARC-Technology for ~85% of the coatings for cutting tools
  - 4 generations of coatings
  - For milling, hobbing, drilling, sawing, fine blanking, etc.
- PECVD-Technology for DLC<sup>2</sup> coating
  - · For cutting of sticky materials with lubricating top coating
- SCIL<sup>®</sup>: High performance sputtering for smooth coatings · For cutting, components, molds and dies
- LACS<sup>®</sup> Hybrid-Technology
  - LAteral ARC and Central Sputtering simultaneously

## Main Coatings of the $\pi^{42}$ Options

| Options | Coatings<br>Machines  | Conventional<br>Coatings                                                                                                             | Nanocomposite<br>Coatings                | Triple Coatings <sup>3®</sup>                                                                                  | QUAD Coatings <sup>4®</sup>                                                           |
|---------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|         | π <b>411</b> eco      | TiN, TiCN, CrN,<br>CrTiN, ZrN,<br>AITiN, AICrN                                                                                       | nACo <sup>2®</sup> , nACRo <sup>2®</sup> | AICrN <sup>3®</sup> , TiXCo <sup>3®</sup> ,<br>ALL <sup>3®</sup>                                               | ALL4®eco                                                                              |
| RLE     | T. C. T. C.           | X-VIc <sup>®</sup>                                                                                                                   | nACVIc <sup>2®</sup>                     |                                                                                                                |                                                                                       |
|         | π <b>417</b> URBO     | AITIN, AICrN                                                                                                                         | nACo <sup>2®</sup> , nACRo <sup>2®</sup> | nACo <sup>3®</sup> , nACRo <sup>3®</sup> ,<br>AICrN <sup>3®</sup> , TiXCo <sup>3®</sup> ,<br>ALL <sup>3®</sup> | nACo <sup>4®</sup> , nACRo <sup>4®</sup> ,<br>TiXCo <sup>4®</sup> , ALL <sup>4®</sup> |
|         | π.4.12                |                                                                                                                                      |                                          |                                                                                                                | nACoX4®                                                                               |
|         | π <b>413</b> 6CIL     | <i>TiB<sub>2</sub>-SCIL<sup>®</sup>, WC/C,</i><br><i>AITiN-SCIL<sup>®</sup>,</i><br><i>X-SCILVIc<sup>2<sup>®</sup></sup>, ta:C</i> * |                                          |                                                                                                                |                                                                                       |
|         | π <sup>4</sup> 11_ACS | AICrN-LACS®                                                                                                                          |                                          | <b>BorAC</b> <sup>®</sup>                                                                                      | BorCO <sup>®</sup>                                                                    |

\*: In development. 26

# $\mathbf{\Gamma} \mathbf{L} \mathbf{T} \mathbf{I}$

**Cathode Configurations of**  $\pi^{4n}$ 



# Ring Cathodes<sup>\*</sup> for SCIL<sup>®</sup> with Ti, Cr, AICr, AITi, $B_x$ , Si<sub>x</sub>, TiB<sub>2</sub>, ...W

## The Main Parts of the SCIL® Cathodes with Rings

- 1. Cathode body, incl. magnetic & electronic systems
- 2. Holed pipe for coolant inlet
- 3. Membrane pipe, tensed by inside cooling water for good conduction to the rings
- 4. Target rings

The non alloyed cathode allows the flexible programming and deposition of the coating stoichiometry.



CH

# PL<sup>211</sup> for Tools and **Machine Components**





Machines with 2 sputtering cathodes, DC and HIPIMS modes ø550x500 mm coatable volume. Many moving parts in the machinery and automotive industries do not need extra hard coatings. The most important requirements are:

- Extremely high smoothness, and
- very low coefficients of friction.

## **Work Modes**

- Monoblock sputtered (DC or HIPIMS) coatings (TiN, CrN) with very low roughness ( $S_a < 20$  nm)
- DLC (Diamond Like Coating) coatings with a very thin sputtered CrN or TiN adhesion layer (~200 nm) plus
  - DLC<sup>2</sup> (SCILVIc<sup>2®</sup>)
    - with silicon doped amorphous carbon with hydrogen (a-C:H:Si)
    - by a PECVD process from gases
  - or DLC<sup>3</sup> (ta:C<sup>®</sup>) ٠
    - by a sputtering process (DC or HIPIMS)
    - from carbon targets



# Hardware

- Footprint:
- Loading volume:
- Coatable volume:
- Max. load:
- W3300 x D2300 x H2400 mm
- Internal chamber size: W820 x D820 x H1100 mm
  - ø500 x H500 mm
  - ø500 x H450 mm
  - 400 kg

#### Advanced Sputtering Technology

- PA3D Module to generate an ionizeded focus plasma into the carousel
- Two planar cathodes (with the standard sizes of the PL1011)
- DC or HIPIMS sputtering

#### Top quality coating

- good hardness (24 40 GPa)
- excellent surface finish (S<sub>a</sub> down to 20 nm)
- excellent adhesion

## **Industry targeting**

- cutting tools for non-ferrous machining application
- molds and dies, general engineering parts •
- protection of cavities
- against corrosion
- against scratches
- sliding parts
  - reduction of friction coefficient ( $\sim 0.1$  against steel)
  - running dry

28



# **Applications with High Surface Quality**

# **Mold Inserts & Optical Mold Inserts**

These applications are only possible, because of the excellent surface quality of the coating deposited by the PL?



#### **Mold Surfaces with Three Different Treatments** The high surface quality of three common used polishing treatment won't be reduced by the coating of the PL **Coatings:** • CrN • a-C:H:Cr Surface after fine sanding **Textured surface by** Mirror surface finish by with emery paper laser or electro-erosion diamond paste polishing Surface Finish Before Coating 27 57 \$ 7 Sa (µm) Sz (µm) Sa (µm) Sz (µm) Sa (µm) Sz (µm) Before $0.25 \pm 0.03$ 2.4 ±0.53 Before 0.15 ±0.01 $2.4 \pm 0.4$ **Before** 0.012 ±0.001 0.37 ±0.03 0.24 ±0.045 3.2 ±0.4 0.14 ±0.07 2.4 ±0.12 Coated Coated Coated 0.011 ±0.001 0.31 ±0.06

## Surface Finish After Coating

**Keeping High Surface Quality after Coating** 







# **PLATIT** *PL*<sup>1017</sup> The Workhorse of Job Coating Centers

# **General Information**

- High capacity hardcoating unit
- Based on PLATIT planar ARC technology
- Coatings on HSS and WC (T  $\leq 500^\circ\text{C})$

# **Hard Coatings**

- Monolayers, Multilayers, and Nanolayers
- Main standard coatings: TiN, TiCN-grey, AlTiN-G
- Available Triple Coatings<sup>3®</sup>:
- TiN, AITiN<sup>2</sup>, ALL<sup>3</sup>: Universal use, forming, hobbing, milling

# Hardware

- Foot print: W3880 x D1950 x H2220 mm
- Internal chamber size: W1000 x D1000 x H1100 mm
- Loading volume: ø600-H780 mm
- Coatable volume: ø600-H680 mm
- Max. load: 400 kg
- Standard BIAS: 15kW DC, 1000V, optional: 20 kW, 250 kHz, 700V
- Double wall, stainless steel, water cooled chamber
- Front door loading, excellent access
- 4 planar cathodes with quick-exchange system
- Storage of 4 spare cathodes inside the cabinet
- Electrical connection: 3x400 V, 50-60 Hz, 95 kVA
- Modular carousel system with 2, 4, 8, and 12 as well as 3, 6, and 9 satellites

# **Electronics and Software**

- Control system with touch-screen menu driven concept
- No programming knowledge is required for control
- Data logging and real-time viewing of process parameters
- Remote diagnostics and control
- Insite operator's manual

# **Options**

- ARC in DC and pulsed mode
- DLC<sup>2</sup> in PECVD mode

# **Cycle Times\***

- Shank tools (2 μm): ø10 x 70 mm, 1080 pcs: 6.25 h
- Inserts (3 μm): ø20 x 6 mm, 8700 pcs: 6.5 h
- Hobs (4 µm): ø80 x 180 mm, 48 pcs: 7.0 h
- \*: The cycle times can be achieved under the following conditions:
- solid carbide tools (no outgassing necessary)
- · high quality cleaning before the coating process (short etching)
- · continuous operation (pre-heated chamber)
- 4-cathode processes
- use of fast cooling (e.g. with helium, opening the chamber at 200°C)
- 3 batches / day



With easy loading, different tool types and sizes can be mixed and coated in one batch.



# Typical Substrates Coated by PL<sup>1011</sup>

Parts for Cutting Tools, Injection Molding, and Die Casting















# **PLATIT** π<sup>2522</sup>

# The High Volume Machine with Rotating and Planar Cathodes

## **General Information**

- · High capacity hardcoating unit
- Based on PLATIT rotating (LARC<sup>®</sup>) and planar-cathodic-ARC-technology
- Coatings on HSS and WC (T  $\leq$  500°C)

## Hard Coatings

- Monolayers, Multilayers, and Nanolayers
- Nanocomposites, TripleCoatings<sup>3®</sup> and QUADCoatings<sup>4®</sup>
- Main Standard Coatings: AICrN<sup>3</sup>, AICrTiN<sup>4</sup>, TiXCo<sup>4</sup>

## Hardware

- Foot print: W4882 x D2181 x H3354 mm
- Internal chamber size: W1000 x D1000 x H1100 mm
- Loading volume: ø600 x H780 mm
- Coatable volume: ø600 H680 mm
- Max. load: 400 kg
- BIAS: 20 kW, 350 kHz, 750 V
- · Double wall, stainless steel, water cooled chamber
- Front door loading, excellent access
- 3 LARC<sup>®</sup>-XL rotating cathodes in the door
- 2 planar cathodes in the back as boosters, with quick exchange system
- All 5 cathodes controlled by pulsed ARC supplies
- Electrical connection: 3x400 V, 50-60 Hz, 100 kVA
- Modular carousels with 2, 4, 8, 12 satellites

## **Electronics and Software**

- Control system with touch-screen menu driven concept
- No programming knowledge is required for control
- · Data logging and real-time viewing of process parameters
- Remote diagnostics and control
- Insite operator's manual

# **Cycle Times\***

- Shank tools (2 μm): ø10 x 70 mm, 1080 pcs: 7.0 h
- Inserts (3 μm): ø20 x 6 mm, 8700 pcs: 7.5 h
- Hobs (4 μm): ø80 x 180 mm, 48 pcs: 8.0 h
- \*: The cycle times can be achieved under the following conditions:
- solid carbide tools (no outgassing necessary)
- high quality cleaning before the coating process (short etching)
- continuous operation (pre-heated chamber)
- 5-cathode processes
- use of fast cooling (e.g. with helium, opening the chamber at 200°C)
- 3 batches / day



# 

# **Most Important Features**

# **High Capacity Coating Unit**

- 5 cathodes can run simultaneously
  - 3x LARC<sup>®</sup>-XL LAteral Rotating Cathodes • Main cathodes: Ti, Al, AlSi+, Cr, TiSi
- 2x planar ARC Cathodes
- Main cathodes: AICr, AITi, Ti
- Deposition of TripleCoatings<sup>3®</sup> and QuadCoatings<sup>4®</sup>
- Up to 3 batches / day, even with 3 different coatings

# **High Loadability**

Robust and easy change of loads

# **Optimal Adhesion due to**

- VIRTUAL SHUTTER and
- TUBE SHUTTER
- LARC GD
- Planar shutters for the planar cathodes

# **Combination of 2 PLATIT Technologies**



# **Main Application Fields**

- Molds and dies with small and large dimensions (for forging, fine blanking, stamping, bending, etc.)
- Cutting tools, especially with larger dimensions (saw blades, hobs, broaches)
- Job coating services



# **Application Fields of the** π<sup>1517</sup> Tools for Forming, Cutting, Molds & Dies, Forging



Cutting tools with larger dimensions and quantities (saw blades, hobs, broaches)



Deep Drawing, Casting, Bending, Fine Blanking



# **Carousels for** $\pi^{111}$ and $\pi^{1511}$

LSIU/LIOITA



 $\begin{array}{l} \mbox{Carousel for single rotation} \\ \mbox{D} \leq 355 \mbox{mm} \end{array}$ 



4 axis carousel for continuous triple rotation with gearboxes  $D \leq 143 mm$ 



10 axis carousel for continuous double rotation  $D \le 82 \text{ mm}$ 



3 axis carousel for saw blades  $D \le 420$  mm with overlapping  $D \le 250$  mm without overlapping



10 axis carousel for hobs and gearboxes D=143 mm



Single rotation carousel for molds, dies and saw blades with  $D \leq 700 \text{mm}$ 



4 axis carousel for molds and dies - D  $\leq$  270 mm



2 axis carousel for saw blades with overlapping  $D \leq 450 \mbox{ mm}$ 



Multiple carousel with changeable 4, 8, 12 axes for gearboxes D=170 mm

hern/nord

Max. usable diameters Dx / Dy mm

# Lightweight Carousels for $\pi^{4np_{LUS}}$



Single rotation carousel D1 = 500 mm for saw blades D1 = 460 mm for molds and dies



7 axis carousel D7=143 mm



4 axis dedicated asymmetric carousel D3=183 mm / D1=250 mm



3 (6) axis carousel D3=220 mm / D6=150 mm



4 (8) axis carousel D4=215 mm / D8=115 mm



12 (6) axis carousel D12=100 mm / D6=145 mm



3 axis carousel for saw blades with overlap Max. saw blade D=285 mm



5 (10) axis carousel D5=175 mm / D10= 94 mm



14 axis carousel D14= 85 mm

### Holders for Cutting Tools

| Holders                                                                                                    | Application                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Plates with gears,<br>as holders for sleeves                                                               | The gears are rotating stepwise, driven by kickers from the side.Plates and gears are available for the different standard diameters of shank tools in the range of d = 2.2 - 52 mm                                                                                                                                                                                                                                                                                    |
| Gearboxes for triple<br>rotation for shank<br>tools with shank<br>diameter D and with<br>gear positions #N | For special big shank tools $D \le 52 \text{ mm } (2") - N = 4$ Special sleeves are necessary                                                                                                                                                                                                                                                                                                                                                                          |
| Gearboxes for triple<br>rotation for shank<br>tools with shank<br>diameter D and with<br>gear positions #N | For rotating sleeves<br>Gearbox 1: $D=143 \text{ mm} - \text{Gearbox 2: } D=170 \text{ mm}$<br>$D \le 40 \text{ mm} - \text{N}=6$<br>$D \le 25 \text{ mm} - \text{N}=8$ $- \text{N}=10$<br>$D \le 20 \text{ mm} - \text{N}=12$<br>$D \le 14 \text{ mm} - \text{N}=18$ $- \text{N}=22$<br>The tools are rotating uninterruptedly around the own axes<br>It allows very homogeneous coating around the tools.<br>Gearboxes make loading of batches significantly easier. |
| Quad-Gearboxes<br>(4-fold rotation)                                                                        | For holding big quantities of shank tools         D=1 mm - 1/8": 5 x 14 positions = 70 tools         D=4 - 8 mm: 5 x 9 positions = 45 tools         The whole batch usually contains the same tools. They are rotating around their own axes.                                                                                                                                                                                                                          |
| Sleeves                                                                                                    | For standard shank tools. Diameters: [mm]           6, 8, 10, 12, 14, 16, 18, 20, 22, 25, 32           and           1/8", 3/16", 1/4", 3/8", 1/2",4/7", 5/8", 3/4", 7/8", 1"                                                                                                                                                                                                                                                                                          |
| Revolvers for shank<br>tools with shank<br>diameter D and with<br>positions #N                             | Special diameters on request<br>D=2.2  mm - N=12 $D=1/8" (3.4  mm) - N= 9$ $D=4.1  mm - N= 6$ $D=5  mm - N= 6$ $D=6  mm - N= 4$ The tools are not rotating around the own axes.                                                                                                                                                                                                                                                                                        |

|                                                           | Holders | Application                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Insert holders with<br>satellites and rods                | P       | Satellites for inserts with diameter / edge length [mm]<br>d / $\Box$ : 8.5, 12, 14, 19, 20, 27, 29.5, 42<br>Satellites positions: 6, 9, 15, 18<br>Support ring for rods of small inserts.<br>Rods according to the hole diameters of the inserts:<br>d > 2.4, 3.7, 4.2, 5.2, 6.2 mm |
| Hob holders for shank<br>hobs and bore hobs               |         | <ul> <li>TongS keep the inserts without holes, spindled on special rods. TongS are products of 4pvd, Aachen, Germany.</li> <li>The parts of hob satellites are set together according to the sizes and dimensions of the different hobs.</li> </ul>                                  |
| Holders deep drawing<br>dies (rings)                      |         | The deep drawing rings are fixed by screws, hanging on "fork" holders.                                                                                                                                                                                                               |
| Cage for double<br>rotation                               |         | Cages for simple flat shapes, which can be laid down, like certain molds, dies, and inserts.                                                                                                                                                                                         |
| Dummy cage<br>/ertical holders for<br>ine blanking tools, |         | Dummy cages have to fill the empty places in the carousels<br>Flat parts, punches, and fine blanking tools should be<br>coated on one side only. Therefore only double rotation is                                                                                                   |
| ounches and<br>components                                 |         | The vertical holders with slots enable flexible clamping of the tools by screws or magnets.                                                                                                                                                                                          |

# Loading Capacities

|           | Tool Diameter | Tool Length | Satellites | Discs / Satellite | Holders / Disc | Tools / Holder     | Tools / Disc | Tools / Batch |
|-----------|---------------|-------------|------------|-------------------|----------------|--------------------|--------------|---------------|
| End mills | 2 mm          | 50 mm       | 4          | 5                 | 8              | 12                 | 96           | 1920          |
|           | 6 mm          | 50 mm       | 1          | 5                 | 52             | 1                  | 52           | 26            |
|           | 6 mm          | 50 mm       | 4          | 4                 | 5              | 9                  | 45           | 72            |
|           | 6 mm          | 50 mm       | 4          | 5                 | 18             | 1                  | 18           | 36            |
|           | 8 mm          | 60 mm       | 4          | 4                 | 18             | 1                  | 18           | 28            |
|           | 10 mm         | 70 mm       | 4          | 4                 | 18             | 1                  | 18           | 28            |
|           | 16 mm         | 75 mm       | 4          | 3                 | 12             | 1                  | 12           | 14            |
|           | 20 mm         | 100 mm      | 4          | 3                 | 8              | 1                  | 8            | 9             |
|           | 32 mm         | 133 mm      | 4          | 2                 | 6              | 1                  | 6            | 4             |
| Drills    | 3 mm          | 46 mm       | 4          | 5                 | 5              | 14                 | 70           | 140           |
|           | 4.2 mm        | 55 mm       | 4          | 5                 | 5              | 9                  | 45           | 90            |
|           | 6.8 mm        | 74 mm       | 4          | 4                 | 8              | 4                  | 32           | 51            |
|           | 8.5 mm        | 79 mm       | 4          | 4                 | 18             | 1                  | 18           | 28            |
|           | 10.2 mm       | 102 mm      | 4          | 3                 | 18             | 1                  | 18           | 21            |
|           | 16 mm         | 115 mm      | 4          | 3                 | 12             | 1                  | 12           | 14            |
|           | 20 mm         | 131 mm      | 4          | 2                 | 12             | 1                  | 12           | 9             |
|           | 25 mm         | 170 mm      | 4          | 2                 | 8              | 1                  | 8            | 6             |
| Inserts   | 20 mm         | 6 mm        | 4          | 1                 | 15             | 28                 | 420          | 168           |
| Hobs      | 120 mm        | 200 mm      | 4          | 2                 | 1              | 1                  | 1            |               |
|           | 80 mm         | 180 mm      | 10         | 2                 | 1              | 1                  | 1            | 2             |
|           |               |             |            |                   | Av             | verage number of t | ools / batch | 473           |
| End mills | 2 mm          | 50 mm       | 7          | 5                 | 8              | 12                 | 96           | 3360          |
|           | 6 mm          | 50 mm       | 7          | 4                 | 5              | 9                  | 45           | 126           |
|           | 6 mm          | 60 mm       | 7          | 4                 | 18             | 1                  | 18           | 50            |
|           | 8 mm          | 60 mm       | 7          | 4                 | 18             | 1                  | 18           | 50            |
|           | 10 mm         | 70 mm       | 7          | 4                 | 18             | 1                  | 18           | 50            |
|           | 16 mm         | 75 mm       | 7          | 3                 | 12             | 1                  | 12           | 25            |
|           | 20 mm         | 100 mm      | 7          | 3                 | 8              | 1                  | 8            | 16            |
|           | 32 mm         | 133 mm      | 7          | 2                 | 6              | 1                  | 6            | 84            |
| Drills    | 3 mm          | 46 mm       | 7          | 5                 | 5              | 14                 | 70           | 245           |
|           | 4.2 mm        | 55 mm       | 7          | 5                 | 5              | 9                  | 45           | 157           |
|           | 6.8 mm        | 74 mm       | 7          | 4                 | 8              | 4                  | 32           | 89            |
|           | 8.5 mm        | 79 mm       | 7          | 4                 | 18             | 1                  | 18           | 50            |
|           | 10.2 mm       | 102 mm      | 7          | 3                 | 18             | 1                  | 18           | 37            |
|           | 16 mm         | 115 mm      | 7          | 3                 | 12             | 1                  | 12           | 25            |
|           |               |             |            |                   |                | 1                  |              |               |
|           | 20 mm         | 131 mm      | 7          | 2                 | 12             |                    | 12           | 16            |
|           | 25 mm         | 170 mm      | 7          | 2                 | 8              | 1                  | 8            | 11            |
| Inserts   | 20 mm         | 6 mm        | 7          | 1                 | 15             | 28                 | 420          | 294           |
| Hobs      | 120 mm        | 200 mm      | 7          | 2                 | 1              | 1                  | 1            | 1             |
|           | 80 mm         | 180 mm      | 14         | 2                 | 1              | 1                  | 1            | 2             |





tools in sleeves driven by gearboxes tools in revolvers driven by kickers tools in revolvers driven by gearboxes tools in sleeves driven by quad-gearboxes
 inserts with holes fixed on rods
 hobs on satellites

SIII S

### $PL^{211}/PL^{1011}/\pi^{1511}$

|                     | Tool Diameter                                                                                                                                  | Tool Length                                                                                                                                         | Satellites                                                                      | Discs / Satellite                                                                       | Holders / Disc                                                                                                | Tools / Holder                                                       | Tools / Disc                                                                                                  | Tools / Batch                                                                                                                                                        |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| End mills           | 2 mm                                                                                                                                           | 50 mm                                                                                                                                               | 6                                                                               | 5                                                                                       | 8                                                                                                             | 12                                                                   | 96                                                                                                            | 2880                                                                                                                                                                 |
|                     | 6 mm                                                                                                                                           | 50 mm                                                                                                                                               | 6                                                                               | 5                                                                                       | 8                                                                                                             | 4                                                                    | 32                                                                                                            | 960                                                                                                                                                                  |
|                     | 6 mm                                                                                                                                           | 60 mm                                                                                                                                               | 6                                                                               | 5                                                                                       | 18                                                                                                            | 1                                                                    | 18                                                                                                            | 540                                                                                                                                                                  |
|                     | 8 mm                                                                                                                                           | 60 mm                                                                                                                                               | 6                                                                               | 5                                                                                       | 18                                                                                                            | 1                                                                    | 18                                                                                                            | 540                                                                                                                                                                  |
|                     | 10 mm                                                                                                                                          | 70 mm                                                                                                                                               | 6                                                                               | 4                                                                                       | 18                                                                                                            | 1                                                                    | 18                                                                                                            | 432                                                                                                                                                                  |
|                     | 16 mm                                                                                                                                          | 75 mm                                                                                                                                               | 6                                                                               | 4                                                                                       | 18                                                                                                            | 1                                                                    | 18                                                                                                            | 432                                                                                                                                                                  |
|                     | 20 mm                                                                                                                                          | 100 mm                                                                                                                                              | 6                                                                               | 3                                                                                       | 18                                                                                                            | 1                                                                    | 18                                                                                                            | 324                                                                                                                                                                  |
|                     | 32 mm                                                                                                                                          | 133 mm                                                                                                                                              | 6                                                                               | 2                                                                                       | 14                                                                                                            | 1                                                                    | 14                                                                                                            | 168                                                                                                                                                                  |
| Drills              | 3 mm                                                                                                                                           | 46 mm                                                                                                                                               | 6                                                                               | 5                                                                                       | 8                                                                                                             | 6                                                                    | 48                                                                                                            | 144                                                                                                                                                                  |
|                     | 4.2 mm                                                                                                                                         | 55 mm                                                                                                                                               | 6                                                                               | 5                                                                                       | 8                                                                                                             | 6                                                                    | 48                                                                                                            | 144                                                                                                                                                                  |
|                     | 6.8 mm                                                                                                                                         | 74 mm                                                                                                                                               | 6                                                                               | 4                                                                                       | 8                                                                                                             | 4                                                                    | 32                                                                                                            | 768                                                                                                                                                                  |
|                     | 8.5 mm                                                                                                                                         | 79 mm                                                                                                                                               | 6                                                                               | 4                                                                                       | 18                                                                                                            | 1                                                                    | 18                                                                                                            | 432                                                                                                                                                                  |
|                     | 10.2 mm                                                                                                                                        | 102 mm                                                                                                                                              | 6                                                                               | 3                                                                                       | 18                                                                                                            | 1                                                                    | 18                                                                                                            | 324                                                                                                                                                                  |
|                     | 16 mm                                                                                                                                          | 115 mm                                                                                                                                              | 6                                                                               | 3                                                                                       | 18                                                                                                            | 1                                                                    | 18                                                                                                            | 324                                                                                                                                                                  |
|                     | 20 mm                                                                                                                                          | 131 mm                                                                                                                                              | 6                                                                               | 2                                                                                       | 18                                                                                                            | 1                                                                    | 18                                                                                                            | 210                                                                                                                                                                  |
|                     | 25 mm                                                                                                                                          | 170 mm                                                                                                                                              | 6                                                                               | 2                                                                                       | 12                                                                                                            | 1                                                                    | 12                                                                                                            | 14                                                                                                                                                                   |
| Inserts             | 20 mm                                                                                                                                          | 6 mm                                                                                                                                                | 6                                                                               | 33                                                                                      | 15                                                                                                            | 1                                                                    | 198                                                                                                           | 297                                                                                                                                                                  |
| Hobs                | 120 mm                                                                                                                                         | 200 mm                                                                                                                                              | 6                                                                               | 3                                                                                       |                                                                                                               | 1                                                                    | 1                                                                                                             | 18                                                                                                                                                                   |
|                     |                                                                                                                                                | 180 mm                                                                                                                                              | 6                                                                               | 4                                                                                       |                                                                                                               | 1                                                                    | 1                                                                                                             | 2                                                                                                                                                                    |
|                     | 80 mm                                                                                                                                          |                                                                                                                                                     |                                                                                 |                                                                                         | A                                                                                                             | verage number of t                                                   |                                                                                                               |                                                                                                                                                                      |
| End mills           |                                                                                                                                                |                                                                                                                                                     |                                                                                 | 8                                                                                       |                                                                                                               |                                                                      |                                                                                                               |                                                                                                                                                                      |
| End mills           | 2 mm                                                                                                                                           | 50 mm                                                                                                                                               | 10                                                                              | 8                                                                                       | 8                                                                                                             | 12                                                                   | 96                                                                                                            | 768                                                                                                                                                                  |
| End mills           | 2 mm<br>6 mm                                                                                                                                   | 50 mm<br>50 mm                                                                                                                                      | 10<br>10                                                                        | 8 7 7                                                                                   | 85                                                                                                            |                                                                      | 96<br>70                                                                                                      | 768                                                                                                                                                                  |
| End mills           | 2 mm<br>6 mm<br>6 mm                                                                                                                           | 50 mm<br>50 mm<br>60 mm                                                                                                                             | 10<br>10<br>10                                                                  | 777                                                                                     | 8<br>5<br>18                                                                                                  | 12                                                                   | 96<br>70<br>18                                                                                                | 768<br>490<br>126                                                                                                                                                    |
| End mills           | 2 mm<br>6 mm<br>6 mm<br>8 mm                                                                                                                   | 50 mm<br>50 mm<br>60 mm<br>60 mm                                                                                                                    | 10<br>10<br>10<br>10                                                            | 7<br>7<br>7                                                                             | 8<br>5<br>18<br>18                                                                                            | 12                                                                   | 96<br>70<br>18<br>18                                                                                          | 768<br>490<br>126<br>126                                                                                                                                             |
| End mills           | 2 mm<br>6 mm<br>6 mm<br>8 mm<br>10 mm                                                                                                          | 50 mm<br>50 mm<br>60 mm<br>60 mm<br>70 mm                                                                                                           | 10<br>10<br>10<br>10<br>10<br>10                                                | 7<br>7<br>7<br>6                                                                        | 8<br>5<br>18<br>18<br>18<br>18                                                                                | 12                                                                   | 96<br>70<br>18<br>18<br>18                                                                                    | 768/<br>490/<br>126/<br>126/<br>108/<br>108/                                                                                                                         |
| End mills           | 2 mm<br>6 mm<br>6 mm<br>8 mm<br>10 mm<br>16 mm                                                                                                 | 50 mm<br>50 mm<br>60 mm<br>60 mm<br>70 mm<br>75 mm                                                                                                  | 10<br>10<br>10<br>10<br>10<br>10<br>10                                          | 7<br>7<br>7<br>6<br>6                                                                   | 8<br>5<br>18<br>18<br>18<br>18<br>18<br>12                                                                    | 12                                                                   | 96<br>70<br>18<br>18<br>18<br>18<br>12                                                                        | 7680<br>4900<br>1260<br>1260<br>1260<br>1080<br>720                                                                                                                  |
| End mills           | 2 mm<br>6 mm<br>6 mm<br>8 mm<br>10 mm<br>16 mm<br>20 mm                                                                                        | 50 mm<br>50 mm<br>60 mm<br>60 mm<br>70 mm<br>75 mm<br>100 mm                                                                                        | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                    | 7<br>7<br>7<br>6                                                                        | 8<br>5<br>18<br>18<br>18<br>12<br>12                                                                          | 12                                                                   | 96<br>70<br>18<br>18<br>18<br>18<br>12<br>12                                                                  | 7680<br>4900<br>1260<br>1260<br>1260<br>1080<br>720<br>600                                                                                                           |
| End mills<br>Drills | 2 mm<br>6 mm<br>6 mm<br>8 mm<br>10 mm<br>16 mm<br>20 mm<br>32 mm                                                                               | 50 mm<br>50 mm<br>60 mm<br>60 mm<br>70 mm<br>75 mm<br>100 mm<br>133 mm                                                                              | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                              | 7<br>7<br>6<br>6<br>5                                                                   | 8<br>5<br>18<br>18<br>18<br>12<br>12<br>12<br>6                                                               | 12                                                                   | 96<br>70<br>18<br>18<br>18<br>12<br>12<br>12<br>6                                                             | 7680<br>4900<br>1260<br>1260<br>1080<br>720<br>600<br>240                                                                                                            |
|                     | 2 mm<br>6 mm<br>6 mm<br>8 mm<br>10 mm<br>16 mm<br>20 mm<br>32 mm<br>3 mm                                                                       | 50 mm<br>50 mm<br>60 mm<br>60 mm<br>70 mm<br>75 mm<br>100 mm<br>133 mm<br>46 mm                                                                     | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                        | 7<br>7<br>6<br>6<br>5<br>4                                                              | 8<br>5<br>18<br>18<br>18<br>12<br>12<br>12<br>6<br>5                                                          | 12<br>14<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1           | 96<br>70<br>18<br>18<br>18<br>12<br>12<br>12<br>6<br>70                                                       | 7680<br>4900<br>1260<br>1260<br>1080<br>720<br>600<br>240<br>4900                                                                                                    |
|                     | 2 mm<br>6 mm<br>6 mm<br>8 mm<br>10 mm<br>16 mm<br>20 mm<br>32 mm<br>3 mm<br>4.2 mm                                                             | 50 mm<br>50 mm<br>60 mm<br>60 mm<br>70 mm<br>75 mm<br>100 mm<br>133 mm<br>46 mm<br>55 mm                                                            | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                  | 7<br>7<br>6<br>6<br>5<br>4<br>7<br>7                                                    | 8<br>5<br>18<br>18<br>18<br>12<br>12<br>12<br>6<br>5<br>5<br>5                                                | 12<br>14<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                     | 96<br>70<br>18<br>18<br>18<br>12<br>12<br>12<br>6<br>70<br>70<br>70                                           | 7680<br>4900<br>1260<br>1260<br>1088<br>722<br>600<br>240<br>4900<br>4900                                                                                            |
|                     | 2 mm<br>6 mm<br>6 mm<br>8 mm<br>10 mm<br>16 mm<br>20 mm<br>32 mm<br>3 mm<br>4.2 mm<br>6.8 mm                                                   | 50 mm<br>50 mm<br>60 mm<br>70 mm<br>75 mm<br>100 mm<br>133 mm<br>46 mm<br>55 mm<br>74 mm                                                            | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10            | 7<br>7<br>6<br>6<br>5<br>4<br>7<br>7<br>7<br>6                                          | 8<br>5<br>18<br>18<br>18<br>12<br>12<br>12<br>6<br>5<br>5<br>5<br>8                                           | 12<br>14<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>4 | 96<br>70<br>18<br>18<br>18<br>12<br>12<br>12<br>6<br>70<br>70<br>70<br>32                                     | 7680<br>4900<br>1260<br>1260<br>1088<br>722<br>600<br>240<br>4900<br>4900<br>4900                                                                                    |
|                     | 2 mm<br>6 mm<br>6 mm<br>8 mm<br>10 mm<br>16 mm<br>20 mm<br>32 mm<br>3 mm<br>4.2 mm<br>6.8 mm<br>8.5 mm                                         | 50 mm<br>50 mm<br>60 mm<br>70 mm<br>75 mm<br>100 mm<br>133 mm<br>46 mm<br>55 mm<br>74 mm<br>79 mm                                                   | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10      | 7<br>7<br>6<br>6<br>5<br>4<br>7<br>7<br>7<br>6<br>6                                     | 8<br>5<br>18<br>18<br>18<br>12<br>12<br>12<br>6<br>5<br>5<br>8<br>8<br>18                                     | 12<br>14<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>4 | 96<br>70<br>18<br>18<br>18<br>12<br>12<br>12<br>6<br>70<br>70<br>70<br>32<br>18                               | 7680<br>4900<br>1260<br>1260<br>1080<br>720<br>600<br>240<br>4900<br>4900<br>1920<br>1080                                                                            |
|                     | 2 mm<br>6 mm<br>6 mm<br>8 mm<br>10 mm<br>16 mm<br>20 mm<br>32 mm<br>32 mm<br>4.2 mm<br>6.8 mm<br>8.5 mm<br>10.2 mm                             | 50 mm<br>50 mm<br>60 mm<br>70 mm<br>75 mm<br>100 mm<br>133 mm<br>46 mm<br>55 mm<br>74 mm<br>79 mm<br>102 mm                                         | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 | 7<br>7<br>6<br>6<br>5<br>4<br>7<br>7<br>7<br>6                                          | 8<br>5<br>18<br>18<br>18<br>12<br>12<br>12<br>6<br>5<br>5<br>5<br>8<br>18<br>18                               | 12<br>14<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>4 | 96<br>70<br>18<br>18<br>18<br>12<br>12<br>12<br>6<br>70<br>70<br>70<br>32<br>18<br>18                         | 7680<br>4900<br>1260<br>1260<br>1080<br>720<br>600<br>244<br>4900<br>4900<br>4900<br>1920<br>1080<br>900                                                             |
|                     | 2 mm<br>6 mm<br>6 mm<br>8 mm<br>10 mm<br>16 mm<br>20 mm<br>32 mm<br>3 mm<br>4.2 mm<br>6.8 mm<br>8.5 mm<br>10.2 mm<br>16 mm                     | 50 mm<br>50 mm<br>60 mm<br>70 mm<br>75 mm<br>100 mm<br>133 mm<br>46 mm<br>55 mm<br>74 mm<br>79 mm<br>102 mm<br>115 mm                               | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 | 7<br>7<br>6<br>6<br>5<br>4<br>7<br>7<br>7<br>6<br>6<br>5                                | 8<br>5<br>18<br>18<br>18<br>12<br>12<br>12<br>6<br>5<br>5<br>5<br>8<br>18<br>18<br>18<br>12                   | 12<br>14<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>4 | 96<br>70<br>18<br>18<br>18<br>12<br>12<br>12<br>6<br>70<br>70<br>70<br>32<br>18<br>18<br>18<br>12             | 7680<br>4900<br>1260<br>1260<br>1080<br>720<br>600<br>240<br>4900<br>4900<br>1920<br>1080<br>900<br>480                                                              |
|                     | 2 mm<br>6 mm<br>6 mm<br>8 mm<br>10 mm<br>16 mm<br>20 mm<br>32 mm<br>3 mm<br>4.2 mm<br>6.8 mm<br>8.5 mm<br>10.2 mm<br>16 mm<br>20 mm            | 50 mm<br>50 mm<br>60 mm<br>70 mm<br>75 mm<br>100 mm<br>133 mm<br>46 mm<br>55 mm<br>74 mm<br>79 mm<br>102 mm<br>115 mm<br>131 mm                     | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 | 7<br>7<br>6<br>6<br>5<br>4<br>7<br>7<br>7<br>6<br>6<br>5<br>4<br>4                      | 8<br>5<br>18<br>18<br>18<br>12<br>12<br>12<br>6<br>5<br>5<br>5<br>8<br>18<br>18<br>18<br>12<br>12             | 12<br>14<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>4 | 96<br>70<br>18<br>18<br>18<br>12<br>12<br>12<br>6<br>70<br>70<br>70<br>32<br>18<br>18<br>18<br>12<br>12       | 768<br>4900<br>1260<br>1260<br>1080<br>720<br>600<br>240<br>4900<br>4900<br>4900<br>1920<br>1080<br>900<br>480<br>480<br>480<br>480                                  |
|                     | 2 mm<br>6 mm<br>6 mm<br>8 mm<br>10 mm<br>16 mm<br>20 mm<br>32 mm<br>3 mm<br>4.2 mm<br>6.8 mm<br>8.5 mm<br>10.2 mm<br>16 mm<br>20 mm<br>25 mm   | 50 mm<br>50 mm<br>60 mm<br>70 mm<br>75 mm<br>100 mm<br>133 mm<br>46 mm<br>55 mm<br>74 mm<br>79 mm<br>102 mm<br>115 mm<br>131 mm<br>131 mm           | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 | 7<br>7<br>6<br>6<br>5<br>4<br>7<br>7<br>7<br>6<br>6<br>5<br>4<br>4<br>4<br>3            | 8<br>5<br>18<br>18<br>18<br>12<br>12<br>12<br>6<br>5<br>5<br>5<br>8<br>18<br>18<br>18<br>18<br>12<br>12<br>12 | 12<br>14<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>4 | 96<br>70<br>18<br>18<br>18<br>12<br>12<br>12<br>6<br>70<br>70<br>70<br>32<br>18<br>18<br>18<br>12<br>12<br>12 | 7680<br>4900<br>1260<br>1260<br>1080<br>720<br>600<br>240<br>4900<br>4900<br>1920<br>1080<br>900<br>480<br>480<br>480<br>480<br>480<br>480<br>480<br>480<br>480<br>4 |
| Drills              | 2 mm<br>6 mm<br>6 mm<br>8 mm<br>10 mm<br>16 mm<br>20 mm<br>32 mm<br>3.2 mm<br>4.2 mm<br>6.8 mm<br>8.5 mm<br>10.2 mm<br>16 mm<br>20 mm<br>25 mm | 50 mm<br>50 mm<br>60 mm<br>70 mm<br>75 mm<br>100 mm<br>133 mm<br>46 mm<br>55 mm<br>74 mm<br>79 mm<br>102 mm<br>115 mm<br>131 mm<br>131 mm<br>131 mm | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 | 7<br>7<br>6<br>6<br>5<br>4<br>7<br>7<br>7<br>6<br>6<br>6<br>5<br>4<br>4<br>4<br>3<br>58 | 8<br>5<br>18<br>18<br>18<br>12<br>12<br>12<br>6<br>5<br>5<br>5<br>8<br>18<br>18<br>18<br>12<br>12             | 12<br>14<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>4 | 96<br>70<br>18<br>18<br>18<br>12<br>12<br>12<br>6<br>70<br>70<br>70<br>32<br>18<br>18<br>18<br>12<br>12       | 7680<br>4900<br>1260<br>1260<br>1080<br>720<br>600<br>240<br>4900<br>4900<br>4900<br>1920<br>1080<br>900<br>480<br>480<br>360                                        |
| Drills              | 2 mm<br>6 mm<br>6 mm<br>8 mm<br>10 mm<br>16 mm<br>20 mm<br>32 mm<br>3 mm<br>4.2 mm<br>6.8 mm<br>8.5 mm<br>10.2 mm<br>16 mm<br>20 mm<br>25 mm   | 50 mm<br>50 mm<br>60 mm<br>70 mm<br>75 mm<br>100 mm<br>133 mm<br>46 mm<br>55 mm<br>74 mm<br>79 mm<br>102 mm<br>115 mm<br>131 mm<br>131 mm           | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 | 7<br>7<br>6<br>6<br>5<br>4<br>7<br>7<br>7<br>6<br>6<br>5<br>4<br>4<br>4<br>3            | 8<br>5<br>18<br>18<br>18<br>12<br>12<br>12<br>6<br>5<br>5<br>5<br>8<br>18<br>18<br>18<br>18<br>12<br>12<br>12 | 12<br>14<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>4 | 96<br>70<br>18<br>18<br>18<br>12<br>12<br>12<br>6<br>70<br>70<br>70<br>32<br>18<br>18<br>18<br>12<br>12<br>12 | 757<br>7680<br>4900<br>1260<br>1260<br>1260<br>1080<br>720<br>600<br>240<br>4900<br>4900<br>4900<br>4900<br>4900<br>4900<br>490                                      |



Only standard holders were used for capacity calculations. Capacity can be increased with dedicated holders. tools in sleeves driven by gearboxes
 tools in revolvers driven by kickers
 tools in revolvers driven by gearboxes

tools in sleeves driven by quad-gearboxes
 inserts with holes fixed on rods
 hobs on satellites

### **Customized Coating Units** for Special Applications

During the last two decades PLATIT successfully grew a large worldwide network of customers, who came to PLATIT with their special demands. Due to the increase of these special demands, PLATIT decided to specialize its team in Vaulruz, Switzerland to engineer and produce special machines.

The engineers and technicians are specialized in:

- concept development
- advice & consultation
- mechanical & electrical equipment design
- customer specific programming
- manufacturing with a local network of Swiss companies
- · factory acceptance test and commissioning at customers' facilities
- machine and process support & spare parts.

Systems developed, produced and delivered to the following sectors:

- Cutting tools: manufacturers of large cutting tools like broaches & saw blades
- Aerospace: anti-abrasion, anti-erosion hard coatings, scratch resistance coatings
- Plastic injection: extra smooth coatings for corrosion and scratch protection & lubricant films for moving elements with minimum lubrication and tight tolerances
- · Medical industries: bio compatible coatings for dental components and medical devices

Technologies implemented and delivered:

- ARC in DC & pulsed modes
- Sputtering in DC, pulsed & HiPIMS (High-Power Impulse Magnetron Sputtering) modes and
- PECVD (Plasma Enhanced Chemical Vapor Deposition) mode

Sophisticated special systems, requiring special machine designs, holders, handlings and coatings:

- · machine and medical components
- saw bands
- saw blades, and
- broaches





### π<sup>603</sup> for Coating of Saw Bands





**Customized** Units

43





Three rotating cathodes for flexible deposition



Saw band coils up to 1.4 m diameter can be coated. The back side of the saw band is deposited with a help of a planar target.



### **Development of Dedicated Coatings for Saw Bands**



a



Source: Wikus, Spangenberg, Germany

### **Dedicated Units** for Saw Blades



Source: Tru-Cut, Brunswick, OH, USA





### PL2001 for saw blades

- Extremely high capacity hardcoating unit for large tools and substrates
- Based on PLATIT planar-cathodic-ARC-technology
- Coatings on HSS and WC (T  $\leq$  500°C)

#### Hardware

- Foot print: W3880 x D2350 x H2220 mm
- Internal chamber size: W1700 x D1700 x H1100 mm
- Coatable volume: up to Ø1200 x H700 mm
- Max. substrate load: 800 kg
- 4 PLATIT cathodes with quick-exchange system fully compatible with the PL1001 COMPACT cathodes
- Electrical connection: 3x400 V, 50-60 Hz, 110 kVA
- Modular carousel system with 1, 2, 3, 4, 6, 8 satellites





Loading with overlapping

#### π..... π422 PL<sup>1011</sup> PL2011 PL<sup>1011</sup> PL2011 Saw sizes Saw blade thickness # of satellites # of satellites # of blades # of blades # of blades spacing *#* of satellites [mm] sizes ["] between per load per load per load 3.94 1.5 4.72 1.5 6.30 1.5 7.87 8.86 9.84 10.83 11.81 12.40 12.80 2.2 13.78 2.2 14.17 2.2 15.75 2.2 17.72 19.69 2.2 21.65 22.05 24.41 3.5 32.68 37.99 Ω 41.97

#### **Loading capacities**

### **Applications**

### Tool Life Comparison at Sawing



### Thickness Reduction at "Depth" at Overlapped Coating of Saw Blades





### Sawing









Tool: carbide circular sawblade Ø 160mm x 0,8mm, z=200 Cutting conditions: n=400 rev/min,  $v_f=64$  mm/min, lubrication: oil Life time criterion: Burr formation on work piece Source: Swiss watch industry 45

### **Dedicated Units for Broaches**

### **PL1401-HUT for Broaches**

- Based on PLATIT planar-cathodic-ARC-technology
- After coating the first half, the broaches must be turned to coat the other half in a second batch

#### Hardware

- Coatable volume: ø700 x H700 mm + ø150 x H700 mm
- Max. length of broaches: 2000 mm
- Max. coatable lengths on broaches: 2 x 700 mm
- Max. substrate load: 400 kg
- 4 PLATIT cathodes with quick-exchange system fully compatible with the PL1001 COMPACT cathodes
- Modular carousel system with 1, 2, 3, 4, 6, 8 satellites



# Korrer: Metallestalki, Bilbao, EX

### **PL2511 for Extra Long Broaches**

- Based on PLATIT planar-cathodic-ARC-technology
- The extra long broaches are coated in 1 batch

### Hardware

- Coatable volume: ø700x700 2'000 mm
- Max. length of a broach: 2'500 mm
- Max. substrate load: 600 kg
- 6 PLATIT cathodes with quick-exchange system, fully compatible with the PL1001 compact cathodes
- Modular carousel system with 1, 2, 4, 6, 8 satellites
- The coating unit and the loading system are to be embedded into the special fundament of the work floor

### **Dedicated 1-Chamber Cleaning System for Broaches**

- Max. broach length: 2'500 mm
- Max. broach load: 600 kg
- Cycle time < 1h





### PL<sup>2511</sup> Cathodes & Targets & Carousel

### **Cathode Configuration**



#### **Caroussels**

- Smart and flexible carousel design
  - 4 satellites max. 4x ø270 mm
  - 8 satellites max. 8x ø176 mm
  - 12 satellites max. 12x ø 92 mm
- Highest flexibility offered to accommodate dedicated loads but also mixed loads

- Coating range 2000 mm with excellent thickness distribution across height:  $\pm 10\%$
- $\emptyset700$  and H = 2500 mm maximum tool size
- 600 kg maximum loading capacity; higher loads on demand
- Smart carousel design solution offering 1fold, 2fold and 3fold rotation on one platform
- Loading availability for broaches, hobs and any other kind of shank type tools, even molds & dies parts



### Loading Table

| Broaches - Length [mm] |                  |                  |                  |                                        |  |  |  |  |  |  |  |
|------------------------|------------------|------------------|------------------|----------------------------------------|--|--|--|--|--|--|--|
|                        | 0 - 600          | 601 - 1100       | 1100 - 2500      | Carousel configuration                 |  |  |  |  |  |  |  |
|                        | pcs./plate x pla | te/spindle x nun | nber of spindles |                                        |  |  |  |  |  |  |  |
| ø Round Broaches [mm]  |                  |                  |                  |                                        |  |  |  |  |  |  |  |
| $0 < \emptyset < 30$   | 96               | 64               | 32               | Standard 4 spindles, 8 position plates |  |  |  |  |  |  |  |
|                        | 8 x 3 x 4        | 8 x 2 x 4        | 8 x 1 x 4        |                                        |  |  |  |  |  |  |  |
| $30 < \emptyset < 50$  | 48               | 32               | 16               | Standard 4 spindles, 4 position plates |  |  |  |  |  |  |  |
|                        | 4 x 3 x 4        | 4 x 2 x 4        | 4 x 1 x 4        |                                        |  |  |  |  |  |  |  |
| $50 < \emptyset < 80$  | 36               | 24               | 12               | 12 spindle carousel, no plates         |  |  |  |  |  |  |  |
|                        | 1 x 3 x 12       | 1 x 2 x 12       | 1 x 1 x 12       |                                        |  |  |  |  |  |  |  |
| 80 < ø < 100           | 24               | 16               | 8                | 8 spindle carousel, no plates          |  |  |  |  |  |  |  |
|                        | 1 x 3 x 8        | 1 x 2 x 8        | 1 x 1 x 8        |                                        |  |  |  |  |  |  |  |
| 100 < ø < 250          | 12               | 8                | 4                | 4 spindle carousel, no plates          |  |  |  |  |  |  |  |
|                        | 3 x 4            | 2 x 4            | 1 x 4            |                                        |  |  |  |  |  |  |  |
|                        |                  | Square B         | roaches [mm]     |                                        |  |  |  |  |  |  |  |
| 20 x 50                | 120              | 80               | 40               | 4 spindle carousel, flat plates        |  |  |  |  |  |  |  |
|                        | 10 x 3 x 4       | 10 x 2 x 4       | 10 x 1 x 4       |                                        |  |  |  |  |  |  |  |
| 30 x 30                | 96               | 64               | 32               | 4 spindle carousel, flat plates        |  |  |  |  |  |  |  |
|                        | 8 x 3 x 4        | 8 x 2 x 4        | 8 x 1 x 4        |                                        |  |  |  |  |  |  |  |
| 40 x 60                | 72               | 48               | 24               | 4 spindle carousel, flat plates        |  |  |  |  |  |  |  |
|                        | 6 x 3 x 4        | 6 x 2 x 4        | 6 x 1 x 4        |                                        |  |  |  |  |  |  |  |
| 50 x 100               | 36               | 24               | 12               | 4 spindle carousel, flat plates        |  |  |  |  |  |  |  |
|                        | 3 x 3 x 4        | 3 x 2 x 4        | 3 x 1 x 4        |                                        |  |  |  |  |  |  |  |
| 60 x 200               | 24               | 16               | 8                | 4 spindle carousel, flat plates        |  |  |  |  |  |  |  |
|                        | 2 x 3 x 4        | 2 x 2 x 4        | 2 x 4            |                                        |  |  |  |  |  |  |  |



**Pre- and Post-Treatment** 

PLION

B

PLOODD

### Stripping

PL

π"="

1 0

+ +



1.450

\* .....

The integration of flexible coating into the manufacturing production requires complete turnkey solutions.

PLATIT offers complete coating systems including all necessary peripheral equipment and technologies for:

- surface pretreatment by polishing, brushing and/or micro blasting,
- one-chamber vacuum cleaning with "start-and-forget" operation,
- stripping of coatings from HSS and carbides,
- handling for loading and unloading of substrates and cathodes,
- and quality control systems according to ISO 9001.



S LIVI

### Coating

### Quality Control Cleaning

(

Turnkey

#### Work Flow in a **Small Coating Center** incoming wkbench 1 outgoing PQCS 2 1 က workbench 3 7 9 8 5.0 m 3 6 4 5 (cleaning) **π111** workbench V111 Ζ 3 microblasting preparation $C_2H_2$ edge chiller stripping 3c 3b 3a

10.0 m

### Work Flow in Minimal Coating Center

- 1. Incoming goods
- 2. Preparations for cleaning (e.g. microblasting)
- 3. Cleaning
- 3a. Optionally: stripping
- 3b. Optionally: edge preparation (e.g. brushing, micro blasting, etc.)
- 3c. Optionally: post treatment (e.g. micro blasting, polishing, etc.)
- 3d. Optionally: cleaning after pre or post treatment
- 4. Preparations for coating (e.g. loading carousels)
- 5. Coating
- 6. Unload charge Optionally post surface treatment
- 7. Check quality with PQCS
- 8. Packing for shipping
- 9. Outgoing goods / shipping

Some equipment (chiller, stripping, microblasting, edge preparation) should be set up in a different room, apart from the coating area. The chiller can be placed outside.



Source: Müller Präzisionswerkzeuge, Sien, Germany

### Stripping and its Ways

Under optimum conditions the electro-chemical stripping can be carried out without damaging the substrates. However, normally it damages the substrates, especially carbides with cobalt leaching.

### What is Cobalt-Leaching?

Removal of some cobalt from the top surface of the composite material tungsten carbide consisting of WC (grains) and cobalt (matrix).

Reason: Removal of cobalt by oxidation, mainly by contact with water:

- Water cooled grinding
- Too fast grinding with blunt grinding wheel (even when cooling with oil)
- Water based stripping

Coating of cobalt-leached carbide is useless. The coating has in fact a good adhesion to the top WC layer, but both peel off together at the first cut because the binding cobalt is missing.





### Stripping at conventional and integrated coating service



### The conventional way

The risk of bad adhesion is very high. The stripping takes place after regrinding and damages the final geometry of the tool. The edge preparation after stripping can reduce the damage only. Additionally, packing, transport, and repackaging increase the risk of tool damaging enormously.

#### The integrated way

The stripping can be done prior to the regrinding. This creates a lot of advantages for your production:

- · Less transport and packaging, less damages by handling
- No chemical destruction after regrinding, the edge preparation unfolds to its full effect (regularly)
- Optimum adhesion
- The performance is close to a new tool.

### **Stripping of PLATIT Coatings**

### **Conventional Decoating Modules (ST Series)**



#### Solid carbide drill coated with AITiN

### Stripped solid carbide drill



| Machine       | Description                                      | Max. Tool Dimensions (WxDxH)                       |  |  |  |  |
|---------------|--------------------------------------------------|----------------------------------------------------|--|--|--|--|
| 1. ST-40 HM   | Decoating Ti, Al based coatings from carbide     | 160 x 330 x 160 mm                                 |  |  |  |  |
| 2. ST-40 CR   | Decoating Cr based coatings from carbide and HSS | 330 x 330 x 300 mm                                 |  |  |  |  |
| 3. ST-40 HSS  | Decoating Ti, Al, Cr based coatings from HSS     | 330 x 240 x 200 mm                                 |  |  |  |  |
| 4. ST-40 R    | Rinsing module                                   | 330 x 330 x 300 mm                                 |  |  |  |  |
| 5. ST-40 P    | Corrosion protection module                      | 330 x 330 x 300 mm                                 |  |  |  |  |
| 6. ST-170-CR  | Decoating Cr based coatings from carbide and HSS | 330 x 1100 x 200 mm (for 7 hobs with ø80 x 180 mm) |  |  |  |  |
| 7. ST-170 HSS | Decoating Ti, Al based coatings from HSS         | 330 x 1100 x 200 mm (for 7 hobs with ø80 x 180 mm) |  |  |  |  |
| 8. ST-500 HSS | Decoating Ti, Al, Cr based coatings from HSS     | 500 x 500 x 400 mm                                 |  |  |  |  |
| 9. ST-500 CR  | Decoating Cr based coatings from carbide and HSS | 500 x 500 x 400 mm                                 |  |  |  |  |
| 10. ST-500 R  | Rinsing module                                   | 500 x 500 x 400 mm                                 |  |  |  |  |
| 11. ST-500 P  | Corrosion protection module                      | 500 x 500 x 400 mm                                 |  |  |  |  |

### Super Fast Decoating System CT20/CT40 (Patented)

- Free programmable computer controlled decoating unit
- The decoating process is supplied by pulsed signal
- Automatic process end detection possible
- Max. tool dimensions: ø200 x 300 mm
- 1. Stripping of coatings with TiN adhesion layer
  - Ultra fast stripping down to TiN
  - Recoating on TiN or
  - Stripping of the TiN adhesion layer with ST-40 modules
  - No cobalt leaching
- 2. Stripping of coatings without TiN adhesion layer
  - Ultrafast stripping down to the substrate material
  - Post treatment needed

Special insulated holders are available for shank tools, hobs and inserts.

Decoating-chemicals available through the worldwide distribution network of Borer AG, Zuchwil, Switzerland.



52



### **Decoating Processes**

### **Conventional Decoating Processes**

| Carbide Sha      | Carbide Shank Tools                |                  |        |                  |            |          |          |          |            |   | HSS Hobs                               |                  |        |                  |          |            |          |          |                |            |
|------------------|------------------------------------|------------------|--------|------------------|------------|----------|----------|----------|------------|---|----------------------------------------|------------------|--------|------------------|----------|------------|----------|----------|----------------|------------|
|                  | Chemicals                          |                  |        |                  |            |          |          |          |            |   | Chemicals                              |                  |        |                  |          |            |          |          |                |            |
| Coating          | Decoating Time<br>for 2 µm, Ø10 mm | Decoating Recipe | Module | Galvanic Support | Decoat 100 | Decoat H | Decoat K | Decoat C | Decoat 301 |   | Decoating Time<br>for 4 µm, Ø80x180 mm | Decoating Recipe | Module | Galvanic Support | Decoat H | Decoat 231 | Decoat K | Decoat C | Decoat AlZiRo+ | Decoat 301 |
| TiN              | 4 - 5 h                            | T-HM             | HM     | Х                | Х          | Х        | Х        |          | Х          |   | ~ 1 h                                  | T-HSS            | HSS    |                  | Х        |            |          |          | Х              |            |
| <b>TiCN-grey</b> | 6 - 8 h                            | T-HM             | HM     | Х                | Х          | Х        | Х        |          | Х          |   | $\sim 2 h$                             | T-HSS            | HSS    |                  | Х        |            |          |          | Х              |            |
| TiAIN            | 10 - 18 h                          | T-HM             | HM     | Х                | Х          | Х        | Х        |          | Х          |   | 1 - 2 h                                | T-HSS            | HSS    |                  | Х        |            |          |          | Х              |            |
| AITIN            | 10 - 18 h                          | T-HM             | HM     | Х                | Х          | Х        | Х        |          | Х          |   | 1 - 2 h                                | T-HSS            | HSS    |                  | Х        |            |          |          | Х              |            |
| CrN              | 0.5 - 3 h                          | С                | Cr     |                  |            |          | Х        | Х        | Х          | 0 | ).5 - 3 h                              | С                | Cr     |                  |          | Х          | Х        | Х        |                | Х          |
| AICrN            | 0.5 - 2 h                          | С                | Cr     |                  |            |          | Х        | Х        | Х          | 0 | ).5 - 2 h                              | С                | Cr     |                  |          | Х          | Х        | Х        |                | Х          |
| TiN/AICrN        | 0.5 - 2 h                          | C/T-HM           | Cr/HM  | Х                | Х          | Х        | Х        | Х        | Х          | 0 | ).5 - 2 h                              | C/T-HSS          | Cr/HSS |                  | Х        | Х          | Х        | Х        | Х              | Х          |
| nACo             | 9 - 11 h                           | T-HM             | HM     | Х                | Х          | Х        | Х        |          | Х          | 0 | ).5 - 2 h                              | T-HSS            | HSS    |                  | Х        |            |          |          | Х              |            |
| nACRo            | 0.5 - 2 h                          | С                | Cr     |                  |            |          | Х        | Х        | Х          | 0 | ).5 - 2 h                              | С                | Cr     |                  |          | Х          | Х        | Х        |                | Х          |
| TiXCo            | 5 - 9 h                            | T-HM             | HM     | Х                | X          | Х        | Х        |          | Х          |   | 1 - 3 h                                | T-HSS            | HSS    |                  | Х        |            |          |          | Х              |            |

### Fast Decoating Processes

| <b>Carbide Shar</b> | Carbide Shank Tools                   |          |                      |                  |               |                  |            |          |          |                                           |          | HSS Hobs |                       |                  |               |                 |          |
|---------------------|---------------------------------------|----------|----------------------|------------------|---------------|------------------|------------|----------|----------|-------------------------------------------|----------|----------|-----------------------|------------------|---------------|-----------------|----------|
|                     | Chemicals                             |          |                      |                  |               |                  |            |          |          |                                           | Chem     |          |                       |                  | Chemicals     |                 |          |
| Coating             | Module CT-40 Time<br>for 2 µm, Ø10 mm | Decoat S | Module ST-40 HM Time | Decoating Recipe | Posttreatment | Galvanic Support | Decoat 100 | Decoat H | Decoat K | Module CT-40 Time<br>for 4 µm, Ø80x180 mm | Decoat K | Decoat C | Module ST-40 HSS Time | Decoating Recipe | Posttreatment | Decoat AlZiRo + | Decoat H |
| TiN                 |                                       |          | 4 - 5 h              | T-HM             |               | Х                | Х          | Х        | Х        |                                           |          |          | 1 h                   | T-HSS            |               | Х               | Х        |
| <b>TiCN-grey</b>    |                                       |          | 6-8h                 | T-HM             |               | Х                | Х          | Х        | Х        |                                           |          |          | 2 h                   | T-HSS            |               | Х               | Х        |
| TiAIN               | 2 min                                 | X        | 15 min               | T-HM             |               | Х                | Х          | Х        | Х        |                                           |          |          | 1 - 2 h               | T-HSS            |               | Х               | Х        |
| AITIN               | 2 min                                 | Х        | 15 min               | T-HM             |               | Х                | Х          | Х        | Х        |                                           |          |          | 1 - 2 h               | T-HSS            |               | Х               | Х        |
| CrN                 | 2 min                                 | Х        |                      |                  | Х             |                  | 1.1        |          |          | 10 min                                    | Х        | X        |                       |                  | X             |                 |          |
| CrTiN-ML            | 2 min                                 | X        | 15 min               | T-HM             |               | Х                | Х          | Х        | Х        | 10 min                                    | Х        | Х        | 10 min                | T-HSS            |               | Х               | Х        |
| AICrN               | 2 min                                 | Х        | 100                  |                  | Х             |                  |            |          |          | 10 min                                    | Х        | Х        |                       |                  | Х             |                 |          |
| TiN/AICrN           | 2 min                                 | X        | 15 min               | T-HM             |               | Х                | Х          | Х        | Х        | 5 min                                     | Х        | Х        | 10 min                | T-HSS            |               | Х               | Х        |
| AlTiCrN             | 2 min                                 | X        | 15 min               | T-HM             |               | Х                | Х          | Х        | Х        | 10 min                                    | Х        | Х        | 10 min                | T-HSS            |               | Х               | Х        |
| nACo                | 2 min                                 | Х        | 15 min               | T-HM             |               | Х                | Х          | Х        | Х        |                                           |          |          | 0.5 - 2 h             | T-HSS            |               | Х               | Х        |
| nACRo               | 2 min                                 | Х        |                      |                  | Х             |                  |            |          |          | 10 min                                    | Х        | Х        |                       |                  | Х             |                 |          |
| TiXCo               | 2 min                                 | X        | 1 h                  | T-HM             |               | Х                | Х          | Х        | Х        |                                           |          |          | 1 - 3 h               | T-HSS            |               | Х               | Х        |

Dedicated coating processes for TripleCoatings and QuadCoatings are also available - De-coat chemicals are products of Borer Chemie AG, Zuchwil, Switzerland

### **Cleaning Units**

### V111, V411, V1511

Industrial single chamber cleaning units for fully automatic cleaning and vacuum drying of:

- Cutting tools, molds and dies, machine components
- Also for difficult to clean parts with cavities
- · Developed in cooperation with Eurocold, Italy

These products include:

- Single chamber cleaning unit with detergent (alkaline) tank, demineralized water tank, vacuum drying system
- Water preparation: water softener, reverse osmosis, demi water
- Detergent, salt (to be ordered in user's country)
- Easy to understand touch screen for programming and handling like on the PLATIT coating units
- CleX<sup>®</sup> modular holder system for carrying shank tools, inserts and hobs





| Max. dimensions of substrates to be cleaned: WxDxH [mm]: |                 |                 |  |  |  |  |  |
|----------------------------------------------------------|-----------------|-----------------|--|--|--|--|--|
| V111                                                     | V411            | V1511           |  |  |  |  |  |
| 355 x 390 x 480                                          | 500 x 500 x 500 | 700 x 700 x 750 |  |  |  |  |  |

| W        | ashing Cy      | ycle (~45 n         | nin)                      |                        |                              |                    |                             |                  |
|----------|----------------|---------------------|---------------------------|------------------------|------------------------------|--------------------|-----------------------------|------------------|
| Pr       | e-Rinsing      | Ultrasound cleaning | Rinsing &<br>Steam        | Ultrasound<br>cleaning | Rinsing & rotary arm         | Rinsing &<br>Steam | Ultrasound<br>final rinsing | Vacuum<br>drying |
|          | Detergent 1    | Detergent 1         | City water/<br>demi water | Detergent 2            | Demi water<br>with corr.inh. | Demi water         | Demi water                  | p < 1 bar        |
|          |                |                     | with Corr.inh.            |                        |                              |                    |                             |                  |
| Step by: | V111,<br>V411, | V111,<br>V411,      |                           |                        | V411,                        | V111,<br>V411,     |                             | V111,<br>V411,   |
|          | V1511          | V1511               | V1511                     | V1511                  | V1511                        | V1511              | V1511                       | V1511            |

**Consider wastewater regulations of your country!** 

St

びーことうし

CL-40 US

### **Cleaning and its Control**

#### **Modular Manual Cleaning Unit**

- CL 40 EL: Module for electrolytic cleaning
- CL 40 US: Module for ultrasonic treatment
- CL 40 R: Module for rinsing
- CL 40 D: Oven for drying

Cleaning unit for laboratories and institutes, which do not need automatic cleaning of higher substrate quantities.

The substrates are carried in special baskets by hand from module to module.

- 1. Rinsing away the raw dust using tap water
- 2. Precleaning the substrates using ultrasonic in demineralized water or in detergent
- 3. Rinsing using demineralized water
- 4. Fine cleaning using electrolytic treatment
- 5. Rinsing using demineralized water

See basket sizes on pages 56-57.

#### **Cleanness - Coatability Evaluation by Measuring Surface Tension**

Only a metallic clean surface leads to good adhesion of the coating.

The surface tension (energy) on the substrate is one decisive criterion for the adhesion of coatings.

The higher the surface tension of the substrate, the better the adhesion of the coating. Contaminations like grease, oil, finger prints, or dust decrease the surface energy.

The minimum surface energy should be 42 mN/m on the cleaned substrates before coating.

Bad wettability on oily part because of the low surface energy

CL-40 R

The drop method can characterize the surface energy of the substrate on an easy way: The measuring set contains a series of pens or inks. The testing fluid is applied by pens or inks to the surface of the substrate.

Every pen or ink is marked to recognize a surface energy value; 32, 34, 36, 40, 42, 44 mN/m

Good wettability without oil because of high surface energy



The ink does not generate droplets because its surface tension of the substrate is higher than this of the ink. Good wettability - plate is clean for coating.



# CleX<sup>®</sup>: Clean Flexible

### Modular Holder System for Cleaning and Stripping

### **CleX<sup>®</sup> for Shank Tools**

Flexible holder system for cleaning and stripping of shank tools.

#### Advantages:

- Different tool-diameters can be held together
- Up to 150% more tools per foot print in comparison to conventional systems
- CleX<sup>®</sup> carriers can be handled even with tools loaded
- CleX<sup>®</sup> baskets are stackable
- Smart light design
- Minor contact surfaces
- Inclined surfaces
- Stainless steel construction → High temperature resistance
- → Low shadowing → Hardly cleaning spots
- → Good water draining

- → High durability

#### **CleX<sup>®</sup> for Inserts**

Flexible insert-holder for minimal handling at pre-, posttreatment and coating.

#### Advantages:

- · Different insert-types can be held together
- · For inserts with holes
- · Without reloading, up to 500 inserts can sequentially run through all these processes:
  - Cleaning
  - Edge structuring by wet- / dry-microblasting
  - Coating
  - Polishing by wet- / dry-microblasting

At wet- / dry-microblasting, all sides of the inserts are treated.

For inserts without holes the system can be used with the TongS system (see page 39) for coating only.

### **CleX<sup>®</sup> for Hobs**

Flexible holder for cleaning and stripping of hobs.

#### Advantages:

- · Hobs of different diameters and lengths can be held
- CleX<sup>®</sup> baskets are stackable



CleX<sup>®</sup>-H CleX<sup>®</sup>-V





### CleX<sup>®</sup>: Clean Flexible

### **CleX<sup>®</sup> for Shank Tools**

| CleX <sup>®</sup> Basket  | V111        | V411                            | V1511                          |  |  |
|---------------------------|-------------|---------------------------------|--------------------------------|--|--|
| 330x160 mm                | 2 pcs/level | 4 pcs/level                     | 8 pcs/level                    |  |  |
|                           |             |                                 |                                |  |  |
| CleX <sup>®</sup> Carrier | ø-Shank mm  | Tools/CleX <sup>®</sup> Carrier | Tools/CleX <sup>®</sup> Basket |  |  |
| CleX <sup>®</sup> -S-3    | ø3          | 30                              | 270                            |  |  |
| CleX <sup>®</sup> -S-5    | ø5          | 26                              | 234                            |  |  |
| CleX <sup>®</sup> -S-6    | ø6          | 24                              | 168                            |  |  |
| CleX <sup>®</sup> -S-8    | ø8          | 20                              | 140                            |  |  |
| CleX <sup>®</sup> -S-10   | ø10         | 18                              | 126                            |  |  |
| CleX <sup>®</sup> -S-12   | ø12         | 16                              | 112                            |  |  |
| CleX <sup>®</sup> -S-14   | ø14         | 15                              | 75                             |  |  |
| CleX <sup>®</sup> -S-16   | ø16         | 13                              | 52                             |  |  |
| CleX <sup>®</sup> -S-18   | ø18         | 12                              | 48                             |  |  |
| CleX <sup>®</sup> -S-20   | ø20         | 11                              | 44                             |  |  |
| CleX <sup>®</sup> -S-25   | ø25         | 9                               | 36                             |  |  |
| CleX <sup>®</sup> -S-32   | ø32         | 7                               | 28                             |  |  |

Inch sizes are available on request

### **CleX<sup>®</sup> for Inserts**

| For satellites<br>ø143x380mm | Positions            | For minimum<br>Insert-Hole ø mm  |                          |
|------------------------------|----------------------|----------------------------------|--------------------------|
| CleX <sup>®</sup> -I-15R     | 15 with support ring | 14                               | 2.4                      |
| CleX <sup>®</sup> -I-15      | 15                   | 14                               | 3.7<br>4.2<br>5.2<br>6.2 |
| CleX <sup>®</sup> -I-18      | 18                   | 18 x 8.5<br>9 x 19.0<br>6 x 29.5 | 3.7<br>4.2<br>5.2<br>6.2 |

### ${\rm CleX}^{\scriptscriptstyle (\! R\!)}$ for Hobs

| <b>CleX</b> holders      | Optimized for                    |
|--------------------------|----------------------------------|
| CleX-H:<br>330x160 mm    | 1 x ø130<br>2 x ø 65<br>3 x ø 38 |
| CleX-H-XL:<br>330x240 mm | 1 x ø170<br>2 x ø108<br>3 x ø 70 |
| CleX-V:<br>500x500 mm    | flexible                         |

CleX<sup>®</sup>-H hob basket





CleX<sup>®</sup>-S-18 carrier for ø18 mm



Littler

CleX<sup>®</sup>-H-XL hob basket

### Micro Structuring of Cutting Edges

### Why Edge Preparation?

- 1. Main goal: Increasing the edge stability
  - a. Stable edge form: to avoid the edge's chipping
  - b. Stable, low edge surface roughness: to decrease friction between tool and workpiece
  - c. Stable material:
  - e.g. to avoid cobalt leaching
- 2. Without edge preparation:
  - low performance
- 3. Different work piece materials need:different edge preparation
- 4. Over the optimum edge preparation:
  - performance drops down abruptly
- 5. Optimum edge preparation can:
  - increase performance enormously

#### Typical Edge Images from High End Tool Manufacturers



### General Evaluation of Edge Treatment Methods

| Criteria / Features         | Brushing                                     | Drag Finishing | <b>Dry Micro Blasting</b> | Wet Micro Blasting                            | <b>Magnet Finishing</b>                                |
|-----------------------------|----------------------------------------------|----------------|---------------------------|-----------------------------------------------|--------------------------------------------------------|
| Quality                     | 🕀 good                                       | 🕀 good         | Omedium                   | 🕀 good                                        | 🕀 good                                                 |
| Constancy                   | 🕀 good                                       | 🕀 good         | Omedium                   | 🕀 good                                        | 🕀 good                                                 |
| Flexibility                 | 1 high                                       | Omedium        | 🕀 good                    | 🕀 good                                        | Omedium                                                |
| Productivity                | 🕀 good                                       | Omedium        | Omedium                   | 仓 high                                        | 🕀 good                                                 |
| Price                       | 1 high                                       | Omedium        | Omedium                   | 仓 high                                        | 仓 high                                                 |
| Standard machines available | ✓ yes                                        | 🔗 yes          | 🔗 yes                     | 🔗 yes                                         | 🔗 yes                                                  |
| Flute polishing possible    | ✓ yes                                        | 🔗 yes          | 🔗 yes                     | 🔗 yes                                         | O limited in depth                                     |
| Droplet removal possible    | ✓ yes                                        | 🔗 yes          | 🔗 yes                     | 🔗 yes                                         | 🔗 yes                                                  |
| Special features            | Independent treatment for all edges possible |                |                           | No residual material,<br>high air consumption | Especially for micro tools,<br>demagnetizing necessary |



### Microstructuring: Why and How?



#### Which Methods are Used and How Often?

#### **Comparison of Different Micro Structuring Methods for Treatment of Cutting Tools**

| Tool               | Brushing<br>MET-6 | <b>Drag Finishing</b><br>4-Tools (3-rot.) | Dry blasting<br>TR110 | Wet blasting<br>Compact II+ | Magnet Finish<br>MF 62CA    |
|--------------------|-------------------|-------------------------------------------|-----------------------|-----------------------------|-----------------------------|
| Drill              |                   |                                           |                       |                             |                             |
| Tip only           | A1                | С                                         | B3                    | B2                          | A1                          |
| Tip and Flank      | A1                | A1                                        | A3                    | A2                          | A1                          |
| Step               | A1                | A1                                        | A3                    | A2                          | С                           |
| Flute              | A1                | A1                                        | A3                    | A2                          | С                           |
| All individual     | A1                | С                                         | С                     | С                           | C                           |
| Endmill            |                   |                                           |                       |                             |                             |
| Flank only         | A1                | С                                         | С                     | С                           | A1                          |
| Tip and Flank      | A1                | A1                                        | A3                    | A2                          | A1                          |
| Ball nose          | A1                | A1                                        | A3                    | A2                          | B1                          |
| Insert             | 12111             |                                           |                       |                             |                             |
| With Bore          | B1                | B1                                        | A3                    | A2                          | B1                          |
| Without Bore       | B1                | С                                         | A3                    | B2                          | С                           |
| Hob                | C. S. F. Con      |                                           |                       |                             |                             |
| With Bore          | B1                | B1                                        | A3                    | A2                          | С                           |
| Without Bore       | B1                | С                                         | A3                    | A2                          | С                           |
| Biggest Advantage  | High flexibility  | Smooth surface                            | Easy loading          | Easy loading                | Flexibility for shank tools |
| Biggest Limitation | Long set up       | Manual clamping                           | Rough surface         | Maintenance                 | Price                       |

| P   | ossible:       |         |   | Surface:   | R | ecommendation:  |
|-----|----------------|---------|---|------------|---|-----------------|
| A   | yes            |         | 1 | smooth     |   | best            |
| B w | ith difficulty |         | 2 | rough      |   | alternative     |
| C   | no             | and P . | 3 | very rough |   | not recommended |

### **Applications**

### **The Aim of Edge Preparation**



#### Influence of Edge Preparation at Milling in High Alloyed Steel



Material: 1.2379 - X155 CrVMo12 - 1 - End mill: nACRo coated - d = 10mm, z = 4, ae = 0.25 x d - ap = 1.5 x d - vc = 150 m/min - fz = 0.05 mm/z - Measured: GFE, Schmalkalden, Germany and Schwarz - Measured: GFE, Schmalkalden, Germany and Schwarz - Measured: GFE, Schwarz

#### Drilling



### Influence of Corner Edge Preparation on the Performance of Drills



 $\label{eq:working steel - 1.2379 - X155CrVMo12-1 - HRC22 - blind holes} Solid carbide drills with nACo coating: d=5 mm - vc=75 m/min - fz=0.15 mm/z - ap=15mm - dry air coolant$ 

### **Optimum Edge Rounding**



### **Edge Preparation for End Mills**



The optimal edge rounding values were elaborated in cooperation with GFE, Schmalkalden, Germany

### **Edge Preparation after Coating**

- The edges are rounded after coating
- The coating is removed around the edge
- The edge is "set free"

### Advantages of edge preparation after coating:

- Edge rounding and
- Droplets removing in one step
- Combined break outs of coating+carbide can be avoided
- Elimination of antenna effect

### Disadvantages of edge preparation after coating:

- Interruption of coating structure on long surface line
- Immediately full and direct contact of cutting and work piece material
- Lower heat and chemical insulation
- Low coating thickness near to the edge
- Full coating structure begins far from cutting edge
- Bigger edge radius (e.g. for roughing) results in larger surfaces without coating
- Gives the impression of bad coating



### Brushing

### For Pre- and Post-Treatment of Cutting Tool Edges

### **Brushing with 5 axis CNC machine**



For flexible use

### **Brushing with 2 axis machine**



Use for series production Source: Gerber, Lyss, Switzerland

Main cutting edge

at chisel edge

Carbide step drill after grinding

#### The 5 axes

Tool:

1. X-axis: Horizontal move

2. A-axis: Rotation around tools, rotating axis Brush:

- 3. Y-axis: Transverse axis (offset)
- 4. Z-axis: Vertical move (setting to tool)
- 5. C-axis: Swivel axis (around Z)

#### **Advantages**

- Flexibility
- Individual and independent edge treatment for
- rake face / clearance
- chisel edge
- corner chamfer
- step drill edges
- margin
- Different (dedicated) edge treatment geometries
  - round
  - waterfall
  - reverse waterfall (trumpet)
- Flute detection and tool orientation
- Explicit flute polishing
- Optional magazine for automatic loading

#### Limitations

· First setup for a new tool requires more time





#### Modular software routines and tool holders

For:

- drills, step drills
- reamers
- · end mills, ball nose end mills
- hobs
- inserts
- taps



### Microblasting

### Working Principle and Results



### **Comparison of Wet and Dry Microblasting**

70.1 µm







Reground 1.19 µm







| Comparison                                                      | WET                                                                                                          | DRY                                |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------|
| Surface roughness                                               | Sa=0.05 $\mu$ m - Sz=0.32 $\mu$ m slightly shiny surface                                                     | Sa=0.11 μm - Sz=1.14 μm            |
| Rest material after blasting                                    | Danger of cobalt leaching because of water                                                                   | Smearing of residual material      |
| Coating adhesion                                                | HF1                                                                                                          | HF1                                |
| Edge rounding                                                   | Better to control                                                                                            | Difficult to control               |
| Grain size                                                      | Mesh 320 (50 μm)coarse, for edge rouMesh 400 (37 μm)middle, for surface aMesh 500 (30 μm)fine, for polishing | -                                  |
| Typical micro blasting time [min] for hob ø80 mm - $R=10 \mu m$ | 3                                                                                                            | 6                                  |
| Main features                                                   | Pre cleaning not needed                                                                                      | Pre cleaning needed                |
|                                                                 | Drying after blasting needed                                                                                 | No drying needed after blasting    |
|                                                                 | Difficult cleaning at interrupted work                                                                       | Easy handling at interrupted work  |
|                                                                 | Higher price – huge air consumption                                                                          | Lower price – high air consumption |

### **Drag Grinding**

### Working Principle and Results

The tools are clamped in a planetary drive. The tools are dragged in the process media. The auto rotation of the tools guarantees a homogeneous edge rounding of all cutting edges.





#### **Advantages**

- Reliable process
- High reproducibility
- Flute polishing

#### Limitations

- · Inflexible clamping system
- Clamping head must be full for homogeneous treatment
- Relatively long process time



### **Process Media**

| Composition     | Edge rounding  | Polishing           |
|-----------------|----------------|---------------------|
| Walnut + SiC    | Carbide (+HSS) | Standard coatings   |
| Ceramic 1 + SiC | Carbide (+HSS) | Super hard coatings |

Source: OTEC, Straubenhardt, Germany



### **Stream Grinding**

Extending loading carriage can be set up directly beside the wall 3-jaw gripper for Ø 3 - 20 mm with automatic Ø recognition max. length 200 mm

Parallel gripper with swivel unit for embracing the different Ø in different prisms Sensor for checking immersion depth and tool breakage

> Container 1: With granulate for smoothing

Container 2: Edge honing or polishing

- Interchangeable locked pallets ø3 20 mm
- Automatic switching to the next pallet even at partly loaded pallets or at tool quantity of 1
- Simple programming over the Fanuc robot panel
  Adjustable speed, duration and
- Adjustable speed, duration and immersion depth per pallet

- · Infinitely variable controlled drive right / left
- Processing time:  $\sim 2 \min / \text{tool}$
- Automatic edge rounding and polishing ~2 min / tools

#### Options:

- · Special pallets
- Special grippers
- · Special software

Source: Gabo-Tec GmbH, Böbingen, Germany





The SF stream finishing technology offers deburring, rounding and smoothing in a single processing stage. It can optionally be equipped with pulse finishing. It means the rotating direction of the substrate will be periodacally changed. Depending on the requirement profile, the machines can be pre-equipped automatic loading or optionally equipped with integrated automatic loading. Typical applications are the treatment of machine components with complex geometries such as taps, dies and fuel injectors.

### **Magnet Finish**

### **Working Principle and Results**



The magnetfinish process bases on two rotating disks with an adhered magnetic abrasive. This abrasive sticks on the flat side of the magnetic disks and operates as a thick elastic mass adapting to the shape of the tool. Rotation results in a movement of the abrasive mass against the tool surface. Due to the high velocity of this movement, the surface treatment is very intense.



#### **Advantages**

- · Easy automatic processing
- · Good for small quantities, no dummies needed
- Short process time
- · Cooling channels on drills stay clean
- · Deburring possible without edge rounding
- · Consistent quality over tool length
- · High repeatability due to constant abrasivity

#### Limitations

- Tool range: 0.1 25 mm
- Flute on drill polishing up the Ø 12 mm
- After magnet finishing, demagnetization of the tools is necessary



HM R = 5  $\mu$ m

Source: Magnetfinish GmbH, Switzerland

**Process Media** 

HM ground sharply

| Name                  | Edge rounding     | Polishing                  |
|-----------------------|-------------------|----------------------------|
| Middle Grain Abrasive | HSS               | Standard Coatings          |
| Big Grain Abrasive    | Carbide           |                            |
| Nano Abrasive         | Carbide, PCD, CBN | Superhard and DLC coatings |





### Influence of the Edge Shape

### Importance of the Geometric Edge Parameters



### K-Factor and its Influence on the Application



### Edge Preparation Increases Tool Performance even for WOOD CUTTERS



### **Optical 3D Measurement** of Cutting Edges

Two different methods for contactless and destruction-free measurement of cutting edges.

### Alicona Measuring-Systems

#### Focus-Variation:

A surface-based process with high-resolution combines functionalities of a roughness and 3D-coordinate system. The applied technology provides high stability against extraneous lights and vibrations.



Alicona EdgeMaster with special holder from PLATIT Source: Alicona, Graz, Austria

#### LMI-GFM Measuring-Systems

#### Stripe-light-projection:

Aligned, sectional planes of light are projected on the cutting edge. These are captured by a CCD camera and compared with the emitted light to calculate the edge radii.



LMI MicroCAD Source: LMI, Vancouver, Canada

| Measuring Volume         | 1.6 x 1.2 x 0.8 mm <sup>3</sup> *                                                                                                                   |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Min. Edge Radius         | 5 µm                                                                                                                                                |
| K-Factor                 | Yes                                                                                                                                                 |
| Chipping                 | Ra                                                                                                                                                  |
| Tool Positioning         | Limited                                                                                                                                             |
| Tool Geometry            | No                                                                                                                                                  |
| User-Definied Parameters | No                                                                                                                                                  |
| Break-Outs and Wear      | No                                                                                                                                                  |
| Shape Deviation          | Yes                                                                                                                                                 |
| Surface Roughness        | Not possible                                                                                                                                        |
|                          | Min. Edge Radius<br>K-Factor<br>Chipping<br>Tool Positioning<br>Tool Geometry<br>User-Definied Parameters<br>Break-Outs and Wear<br>Shape Deviation |

\*depending on lens







### **Quality Control PQCS**

### Image Processing System

- Microscopical analysis of test plates and coated tools
- Thickness measurement by Calotest on test
  place and real tools
- Adhesion evaluation using Rockwell test



### Platit Quality Control System (PQCS)

- Easy user interface
- Step by step "Coating Report" generation
- Automatic database entries after "Coating Report" generation and links to:
  - Batch photo
  - Calo image
  - Rockwell image
  - Coating Report
- Report no. (with link to report)
- Tester, Date, Coating unit
- Batch no. (with link to batch photo)
- Measured substrate, substrate material
- Coating
- Hardness before and after coating [HRC]
- Thickness [µm] (with link to Calo image)
- Adhesion class [HF] (with link to Rockwell image)
- Customer, contact
- 5 user defined text fields e.g.
  - pretreatment
  - posttreatment
  - used holders
  - ..
  - 5 user defined number fields e.g.
  - positions of special substrates on carousel

• ...



Measurement



Calo, measured on tool



| FLAT                                                                                                                   | TS                                                                              | Power Tool                                                               |                                             |
|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------|
| <b>Coating Report</b>                                                                                                  |                                                                                 |                                                                          |                                             |
| Tester:<br>Date of massurement.<br>Costing unit:<br>Batch no:<br>Measured substrate:<br>Substrate material<br>Costing: | Dider Cuche<br>7(23)12<br>P111-006<br>12-07-20=09-45<br>Testpece<br>HSS<br>NACe | Report no.:<br>- Customer:<br>- Contact:<br>- Order confirmation number: | 25<br>PowerTools<br>Jack Taylor<br>AF002345 |
| Calo parameters:<br>Grinding time:<br>Grinding speed:<br>Grindball diameter<br>Diamond suspension guality.             | KaloMAX<br>25 s<br>400 min-1<br>30 mm<br>0.50 µm                                | Hardness:<br>before coating<br>after coating                             | Rockwell C<br>65.4 MRC<br>65.2 MRC          |
| Grinding Image                                                                                                         |                                                                                 | Rockwell Indentation                                                     |                                             |
| (0                                                                                                                     |                                                                                 |                                                                          |                                             |
| Thickness total:                                                                                                       | 2.04 µm                                                                         | Adhesion class:                                                          | HF1                                         |
| Comments                                                                                                               |                                                                                 | HEAL HEAL                                                                | able                                        |
|                                                                                                                        | Sęr _                                                                           |                                                                          |                                             |
| Quality Control System Descri                                                                                          |                                                                                 | ware module. Thickness control test according to                         |                                             |

### **Scratch Tester**



Scratch tester with constant loads for testing in production (go or not go) Source: BAQ, Braunschweig, Germany



Scratch tester for lab analysis Source: Anton Paar, Graz, Austria

### Method

- Linear scratching of an indenter with an applied load to characterize the coating adhesion
- The diamond of the scratch test is the same as the diamond of a Rockwell indenter
- The scratch tester allows three ways to apply the load:



#### Limitations

- Analysis of the scratch on an external microscope
- Flat surface required
- Length of scratch:
- Load range:
- 0 30 mm
- 0 200 N (for hard coatings)

### X-Ray Spectrometer



### • X-rays ex

- X-rays excite the substrate to emit X-ray fluorescence
- The analysis is focused on a small spot of 0.3  $\mu m$
- The penetration depth is about 40 50  $\mu$ m (for HSS)



#### **Advantages**

- Non-destructive coating thickness measurement
- Non-destructive composition measurement
- Non-destructive cobalt leaching measurement

### Limitations

- Al (element 13) and Si (element 14) detectable
- Measuring chamber size (L x W x H): 360 x 380 x 240 mm

Source: Fischer, Sindelfingen, Germany

### Surface Analysis by AFM

### Method

- Atomic Force Microscopy (AFM)
- Static and dynamic measuring modes
- Attached to optical microscope (e.g. to the PLATIT Quality Control System PQCS) or as a stand-alone equipment



Manufacturer: Nanosurf AG, Liestal, Switzerland

### **Advantages**

- High-resolution 3D data of the coated surface
- Integrates seamlessly with your optical analysis
- Easy to use and robust scanner
- Automated reports and sample acceptance/rejection rules



Defect Analysis on Hard Coated Surface by AFM

### Limitations

- Max. scan range (XY):  $70 / 110 \,\mu\text{m}$
- Max. height range (Z):
- Resolution (XY / Z):
- Typical noise levels:
- 22 μm
- 1.7 nm / 0.34 nm
- : 0.4 nm (0.55 nm max.)

### **Typical Surface Structures and Roughnesses Measured by AFM**



### Additional Equipment for Handling

### FL380 Fork Lift





Cathode exchange



Fork lift for easy transportation of loaded carousels and cathodes to and from the coating unit. Compatible with the machines of the  $\pi$  series.

Taking out the  $\pi^{2512}$  cathode for exchange from the wooden box

### **Cathode Tables**

For correct vertical holding and stocking of LARC and CERC cathodes.



#### **Tool Inspection Equipment**



- · Tool inspection and measuring before and after coating
- Automatic edge identification
- Automatic measuring processes according to tool geometry
- Wear measurements at tool testing
- Complete tool logs

### for Extended PVD Production

### **Cooling Boxes**

**Degasing Ovens** 



CB411 and CB1011 For *π*<sup>411</sup>, *π*<sup>1511</sup>, and *PL*<sup>1011</sup> Safe cooling of the tools immediately after coating.

To accelerate the cooling and to move away the dust and coating rests. The tools and the carousels are blasted by compressed air.

#### **Polishing for Extreme Shiny Surfaces**



The PolishPeen 770 equipment is a vacuum blasting cabin with an injector in the blasting pistol. A special media is used as polishing powder.

The operation enables mirror finishing for irregular shapes of tools, punches, dies, pins and small-sized molds.



- for cleaning of subtrates surfaces
- especially the internal cooling ducts of rotating shank tools
  73



Brazed tools in the compound, machine components, mold and dies manufactured from simplier steels can contain elements their outgassing would damage the coating chamber. The evaporate pressures of the most «dangerous» elements, zinc, and cadmium, are higher than the coating process pressure. The cadmium and zinc will begin to evaporate at very low temperatures during the deposition process. This can lead to voids in the brazed joint, and cause poor adhesion of the coating.

Therefore, this kind of substrates should be outgassed in a separated outgassing oven before coating in a PVD unit. The outgassing oven heat-treat the substrates at higher temperature than the highest temperature will be in the coating chamber. The outgassed materials are collected on the cold trap of the door, which can be cleaned mechanically after the outgassing process.

#### **Oilfree Mini Steam Jet**

Source: lepco AG, Höri, Switzerland

## **Equipment Layout**

### **In-House Coating Center**





Source: PV-Tech, Pforzheim, Germany



### **Connection Data**

| Name               | Description                     | Dimension WxDxHxRH<br>[mm]             | Weight<br>[kg] | Power supply<br>[V / Hz] | Electrical<br>connection<br>[kVA] | Fuse<br>[A] | Water<br>[bar] | Air<br>[bar] | Gas                                                     |
|--------------------|---------------------------------|----------------------------------------|----------------|--------------------------|-----------------------------------|-------------|----------------|--------------|---------------------------------------------------------|
| π1511              | Coating unit                    | 4882 x 2181 x 3354 x 4200              | 5000           | 3x400 / 50 - 60          | 100                               | 200         | 2 - 4          | 8            | N <sub>2</sub> , Ar, C <sub>2</sub> H <sub>2</sub> , He |
| PL <sup>1011</sup> | Coating unit                    | 3880 x 1950 x 2220                     |                | 3x400 / 50 - 60          | 90                                | 200         | 2 - 4          | 8            | N <sub>2</sub> , Ar, C <sub>2</sub> H <sub>2</sub> , He |
| C1511              | Chiller <b>π<sup>1517</sup></b> | hiller $\pi^{7577}$ 1000 x 1000 x 2055 |                | 3x400 / 50 - 60          | 20.7                              | 40          | 3 - 6          | -            | -                                                       |
| C1011              | Chiller PL <sup>2011</sup>      | 1000 x 1000 x 2055                     | 370            | 3x400 / 50 - 60          | 20.7                              | 40          | 3 - 6          | -            | -                                                       |
| π <b>411</b> PLUS  | Coating unit                    | 2730 x 1776 x 2215 x 3200              | 2650           | 3x400 / 50 - 60          | 110                               | 160         | 2 - 4          | -            | N <sub>2</sub> , Ar, C <sub>2</sub> H <sub>2</sub> , He |
| C411               | Chiller for $\pi^{422}$         | 1680 x 790 x 1410                      | 750            | 3x400 / 50               | 20.5                              | 40          | -              | -            |                                                         |
| C411               | Chiller for $\pi^{422}$         | 1680 x 790 x 1410                      | 750            | 3x460 / 60               | 20.5                              | 40          | -              | -            | -                                                       |
| π <b>111</b> 2-LUS | Coating unit                    | 1881 x 1185 x 2213 x 3200              | 1400           | 3x400 / 50 - 60          | 42                                | 100         | 2 - 4          | -            | N <sub>2</sub> , Ar, C <sub>2</sub> H <sub>2</sub> , He |
| C111               | Chiller for $\pi^{***}$         | 1230 x 790 x 1410                      | 600            | 3x400 / 50               | 12.3                              | 16          | -              | -            | -                                                       |
| C111               | Chiller for $\pi^{***}$         | 1230 x 790 x 1410                      | 600            | 3x460 / 60               | 12.3                              | 16          | -              | -            | -                                                       |
| FL381              | Fork lift                       | 841 x 1330 x 1947                      | 400            | 115-230/50-60            | 0.75                              | 10          | -              | -            | -                                                       |
| V111               | Cleaning unit                   | 1570 x 1370 x 2410                     | 1200           | 3x400 / 50 - 60          | 10                                | 16          | 3 - 4          | 6 - 8        | N <sub>2</sub>                                          |
| V411               | Cleaning unit                   | 1830 x 1980 x 2500                     | 1650           | 3x400 / 50 - 60          | 24                                | 40          | 3 - 4          | 6 - 8        | N <sub>2</sub> , CO <sub>2</sub>                        |
| V1511              | Cleaning unit                   | 4200 x 1800 x 2450                     | 4500           | 3x400 / 50 - 60          | 58                                | 100         | 3 - 6          | 6 - 8        | N <sub>2</sub>                                          |
| DE411              | Degasing oven                   | 1950 x 1500 x 2250                     | 1400           | 3x400 / 50 - 60          | 28                                | 40          | 2 - 3          | 6 - 8        | Ar, He                                                  |
| ST-40 HM           | Stripping unit                  | 625 x 825 x 1200                       | 127            | 230 / 50 - 60            | 1.1                               | 16          | -              | -            | -                                                       |
| ST-40 HSS          | Stripping unit                  | 625 x 825 x 1200                       | 88             | 230 / 50 - 60            | 2.5                               | 16          | 2 - 6          | 6 - 8        | -                                                       |
| DF-4 HD            | Drag finish unit                | 1150 x 970 x 2260                      | 370            | 3x400 / 50 - 60          | 7.5                               | 32          | -              | -            | -                                                       |
| 115N               | Dry sand blasting unit          | 1315 x 1200 x 1885                     | 360            | 230 / 50 - 60            | 0.8                               | 16          | -              | 6 - 10       | -                                                       |
| TR110              | Dry micro blast unit            | 2100 x 1450 x 2430                     | 480            | 3x400 / 50 - 60          | 2                                 | 16          | -              | 3 - 10       | -                                                       |
| C-II               | Wet micro blast unit            | 2100 x 2050 x 2950                     | 1200           | 3x400 / 50 - 60          | 7                                 | 32          | 2 - 4          | 2 - 5        | -                                                       |
| CT-20              | Stripping unit                  | 1860 x 822 x 1460                      | 350            | 3x400 / 50 - 60          | 6.5                               | 16          | 2 - 6          | 3 - 6        | -                                                       |
| PP770              | Polish blast unit               | 845 x 840 x 1740                       | 205            | 230 / 50 - 60            | 0.15                              | 10          |                | 3 - 10       |                                                         |
| PQCS               | Microscope + PC                 | 1500 x 650 x 800                       | 40             | 230 / 50 - 60            | 0.4                               | 10          | -              | -            |                                                         |

The data are approximate values only. For detailed data see PLATIT's periphery handbook.



In - House coating center of eft-Pannon, Budaörs, Hungary

### **Coating Generations and** their Structures

### 1. Generation



#### **Monoblock Structure Without Adhesion Layer**

The monoblock structure without adhesion layer can be produced by the fastest, most economical process. All targets are the same and run during the whole deposition process. Example coatings TiN, CrN

#### 2. Generation

Monoblock



Especially at high aluminum content the monoblock coating should be started with adhesion layer TiN, CrN. Typical coating: AITiN.



At gradient structure the ratio of components (e.g. C) will continuosly be changed. Typical coating: TiAICN<sup>2</sup>

### 3. Generation: TripleCoatings<sup>3®</sup>



### **Conventional Structures With Adhesion Layer**

**Multilayer (ML)** Period > 20 nm



Multilayer structures have higher toughness at lower hardness than comparable monoblock coatings. The "sandwich" structure absorbs the cracks by the sublayers. Typical coating: AlTiN<sup>2</sup>

Period < 20 nm

Nanolayer (NL)



Nanolayer is the conventional structure for the so called Nanocoatings. It is a finer version of multilayers with a period of < 20 nm. Typical coating: CrTiN<sup>2</sup>

#### Nanocomposite (NC)



At depositing Nanocomposites the hard nanocrystalline grains (TiAIN or AICrN) become embedded in an amorphous SiN-Matrix. Typical coating: nACo<sup>2</sup>

4. Generation: QUAD Coatings<sup>4®</sup>



76

## **Comparison of Coating Structures**

By deposition of very different kinds of materials, the components (like Ti, Cr, Al in the first group, and Si in the other) are not mixed completely, and 2 phases are created. The nanocrystalline TiAlN- or AlCrN-grains become embedded in the amorphous  $Si_3N_4$ -matrix and the nanocomposite structure develops.

Silicon increases the toughness and decreases the internal residual stress of the coating. The increasing of the hardness is generated by the structure only, the SiN matrix enwraps the hard grains and avoids growing of their size.

#### No Silicon: AlCrN



- Si addition changes microstructure from columnar to isotropic
- Effect is analog to the Ti-based system
- In TiAIN/SiN less Si is needed to reach glassy structure



#### Low Silicon: AICrN/SiN









The beach comparison illustrates the hardness increase made possible by using a nanocomposite structure. Usually, the foot sinks into dry sand. In wet sand, the foot does not sink in or not as far, because the space between sand grains is filled with water. The surface has a higher resistance, so it is harder.

#### Hardness Increase through Nanocomposites



Source: J. Patscheider, EMPA, CH



77

### **PLATITs Main Coatings**







### **Coating Properties**

|          |          |    |                         | π,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | π***         | PL <b>1011</b> | PL <b>711</b> | π <b>1511</b> | Color               | Nano-<br>hardness<br>up to [GPa] | Thickness<br>[µm] | Friction-<br>(fretting)<br>coefficient | Max. usage<br>tempera-<br>ture [°C] |
|----------|----------|----|-------------------------|----------------------------------------|--------------|----------------|---------------|---------------|---------------------|----------------------------------|-------------------|----------------------------------------|-------------------------------------|
|          |          | 1  | TiN *                   | √                                      | √            | 1              |               | $\checkmark$  | gold                | 26                               | 1 - 7             | 0.4                                    | 600                                 |
|          |          | 2  | TiCN-grey *             | 1                                      | √            | 1              |               | $\checkmark$  | violet              | 38                               | 1 - 4             | 0.25                                   | 400                                 |
|          |          | 3  | TiAIN                   | ~                                      | $\checkmark$ | 1              |               |               | violet-black        | 36                               | 1 - 4             | 0.5                                    | 700                                 |
|          |          | 4  | AITiN                   | ~                                      | √            | $\checkmark$   |               | $\checkmark$  | black               | 32                               | 1 - 4             | 0.6                                    | 900                                 |
|          |          | 5  | Tiaicn                  | ~                                      | √            | 1              |               |               | violet-reddish      | 36                               | 1 - 4             | 0.25                                   | 500                                 |
|          |          | 6  | CrN *                   | 1                                      | $\checkmark$ | $\checkmark$   |               | $\checkmark$  | metal-silver        | 20                               | 1 - 7             | 0.5                                    | 700                                 |
|          | Nitrides | 7  | CrTiN *                 | $\checkmark$                           | √            | $\checkmark$   |               | $\checkmark$  | metal-silver / gold | 30                               | 1 - 7             | 0.40                                   | 600                                 |
| g        | Nitr     | 8  | ZrN *                   | 1                                      | √            | $\checkmark$   |               |               | white-gold          | 22                               | 1 - 4             | 0.40                                   | 550                                 |
| ARCing   |          | 9  | AICrN                   | 1                                      | 1            | 1              |               | $\checkmark$  | blue-grey           | 36                               | 1 - 7             | 0.5                                    | 900                                 |
| A        |          | 10 | ALL <sup>3®</sup>       | 1                                      | 1            | 1              |               | $\checkmark$  | blue-grey           | 37                               | 1 - 4             | 0.5                                    | 850                                 |
|          |          | 11 | ALL <sup>4®</sup>       |                                        | √            |                |               | $\checkmark$  | blue-grey           | 37                               | 1 - 5             | 0.45                                   | 850                                 |
|          |          | 12 | nACo®                   | ~                                      | $\checkmark$ | ~              |               | $\checkmark$  | violet-blue         | 41                               | 1 - 4             | 0.4                                    | 1200                                |
|          |          | 13 | nACRo®                  | 1                                      | $\checkmark$ | 1              |               | $\checkmark$  | blue-grey           | 40                               | 1 - 7             | 0.45                                   | 1100                                |
|          |          | 14 | TiXCo®                  | ~                                      | √            | 1              |               | 1             | copper              | 44                               | 1 - 4             | 0.35                                   | 900                                 |
|          |          | 15 | BorAC <sup>®</sup> -ARC |                                        | $\checkmark$ | 1              |               |               | blue-grey B         | 38                               | 1 - 4             | 0.5                                    | 900                                 |
|          | IX0      | 16 | nACoX®                  |                                        | √            |                |               | $\checkmark$  | black               | 30 - 42                          | 4 - 15            | 0.40                                   | 1200                                |
|          | DLC      | 17 | X-VIc <sup>®</sup> *    | $\checkmark$                           | $\checkmark$ | $\checkmark$   |               |               | grey                | 20 - 38                          | 1 - 4             | 0.15                                   | 400                                 |
|          |          | 18 | X-SCILVIc <sup>®</sup>  |                                        | √            |                | $\checkmark$  |               | blue-grey           | 20 - 30                          | 1 - 4             | 0.15                                   | 400                                 |
| ing      | SCIL®    | 19 | WC/C                    |                                        | √            |                |               |               | grey W              | 16 - 20                          | 1 - 4             | 0.1                                    | 400                                 |
| uttering | SC       | 20 | X-SCIL <sup>®</sup> *   |                                        | √            |                | $\checkmark$  |               | varies 🧧            | 26                               | 1 - 7             | 0.35                                   | 600                                 |
| Spu      |          | 21 | TiB <sub>2</sub>        |                                        | $\checkmark$ |                |               |               | light-grey B        | 30 - 40                          | 0.5 -1.5          | 0.35                                   | 600                                 |
|          | HS       | 22 | ta:C *                  |                                        | #            |                | √             |               | grey 🖤              | >35                              | 1 - 2             | 0.15                                   | 400                                 |
| q        | ۲        | 23 | BorAC-LACS®             |                                        | √            |                |               |               | blue-grey B         | 30 - 50                          | 1 - 7             | 0.5                                    | 900                                 |
| Hybrid   | LACS®    | 24 | BorCO-LACS®             |                                        | √            |                |               |               | copper B            | 44                               | 1 - 7             | 0.35                                   | 900                                 |
| -        |          | 25 | AICrN-LACS <sup>®</sup> |                                        | $\checkmark$ |                |               |               | blue-grey           | 36                               | 1 - 5             | 0.5                                    | 900                                 |

DLC

OLC

\*LT: Low temperature processes possible. VIc®: DLC (Diamond Like Coating)

The given physical values may vary at different coating structures (gradient, mono-, multi- and nanolayers).

#: In development.

\*: The toplayer DLC<sup>2</sup> coatings are deposited by PECVD method (Plasma Enhanced Chemical Vapor Deposition).

HS: HIPIMS (High Performance Impuls Magnetron Sputtering)

### **Main Application Fields**

|    |                         | Cutting                                                                     | Forming                                                           | Machine Component                                                                     |
|----|-------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| 1  | TiN                     | universal use                                                               | molds and dies                                                    | universal use, also for decorative purposes                                           |
| 2  | TiCN-grey               | tapping, milling for HSS and HM with coolant                                | molds and dies, punching                                          |                                                                                       |
| 3  | TiAIN                   | drilling and universal use, also for weak machines                          |                                                                   |                                                                                       |
| 4  | AITIN                   | milling, hobbing, high performance machining, also dry                      |                                                                   |                                                                                       |
| 5  | TiAICN                  | sawing, milling, tapping, also with MQL                                     | molds and dies, punching                                          |                                                                                       |
| 6  | CrN                     | cutting wood, light metals like copper, and Al alloys with low Si           | molds and dies                                                    |                                                                                       |
| 7  | CrTiN                   | cutting and forming high alloyed materials with HSS tools                   | molds and dies with higher<br>hardness, extrusion                 | tool holders, corrosion prot.,<br>medical tools                                       |
| 8  | ZrN                     | machining aluminum, magnesium, titanium alloys                              |                                                                   | for decorative purposes                                                               |
| 9  | AICrN                   | dry milling, hobbing, sawing                                                | fine blanking, punching                                           |                                                                                       |
| 10 | ALL <sup>3®</sup>       | universal; wet and dry cutting                                              | molds and dies, stamping, deep drawing, bending, fine punching    |                                                                                       |
| 11 | ALL <sup>4®</sup>       | universal, cutting of abrasive materials                                    | molds and dies, forging,<br>fine blanking                         |                                                                                       |
| 12 | nACo®                   | turning, hard machining on stable machine, drilling,<br>reaming, grooving   | punching, fine blanking                                           |                                                                                       |
| 13 | nACRo®                  | tough wet cutting of difficult materials (superalloys), micro tools         | friction welding, extrusion,<br>die casting                       |                                                                                       |
| 14 | TiXCo®                  | for superhard cutting                                                       | 1 Salata Pro                                                      |                                                                                       |
| 15 | BorAC <sup>®</sup> -ARC | for milling, hobbing                                                        | fine blanking, punching                                           |                                                                                       |
| 16 | nACoX®                  | HSC dry turning and milling                                                 |                                                                   | for components with highly abrasive load                                              |
| 17 | X-VIc <sup>®</sup>      | cutting light metals, wood                                                  | mold and dies with low<br>friction coefficient                    | car parts, blisks, sawing<br>parts, copper parts                                      |
| 18 | X-SCILVIc <sup>®</sup>  | cutting non-ferrous materials, if extreme low roughness on tools required   | molds and dies if extremely low roughness required on the surface | car parts, blisks, sawing parts, copper<br>parts, if extremely low roughness required |
| 19 | WC/C                    | reducing friction at run-in                                                 | molds and dies if extremely low roughness required on the surface | car parts, blisks, sawing parts, copper<br>parts, if extremely low roughness required |
| 20 | X-SCIL®                 | tapping, thread forming, gun drilling, reaming                              |                                                                   |                                                                                       |
| 21 | TiB <sub>2</sub>        | cutting light metals especially aluminum with low Si                        | mold and dies with easy release                                   | clamping elements with low<br>friction and high wear resistance                       |
| 22 | ta:C                    | cutting non ferrous materials, composite materials,<br>graphite, microtools | for forming tools with high<br>wear load                          | for components with high<br>wear load                                                 |
| 23 | BorAC-LACS®             | dry milling, hobbing, sawing, reaming                                       | fine blanking, punching                                           |                                                                                       |
| 24 | BorCO-LACS®             | universal, especially for hard machining                                    |                                                                   |                                                                                       |
| 25 | AICrN-LACS®             | micro machining                                                             | fine blanking, punching                                           |                                                                                       |

#### The main application fields of the coating components:

- Ti: general component, for wet machining, drilling, turning
- C: for forming and cutting of sticky materials at low temperature, for machine components as DLC
- Al: for universal use, for abrasive materials, for dry machining
- Cr: for abrasive and high alloyed materials, also at dry machining, for wood
- Si: general and hard machining as Nanocomposites for rigid machines, for finishing
- B: universal use of coating with low internal stress
- 0: for high temperature machining, for turning, milling
- C: increasing hardness with low friction coefficient, limited heat resistance

### **Coating Guide**

### **Coating Usage Recommendations**

|                          |                     | Cut                                          | ting                             |                        | Fine Blanking            | Chiples                  | s Forming                            | ;                   |
|--------------------------|---------------------|----------------------------------------------|----------------------------------|------------------------|--------------------------|--------------------------|--------------------------------------|---------------------|
|                          | Turning             | Milling - Hobbing<br>Gear Cutting<br>Savving | Drilling<br>Reaming<br>Broaching | Tapping                | Punching<br>Stamping     | Injection<br>molding     | Forming<br>Deep Drawing<br>Extrusion | Tribolom            |
| Steels unalloyed         | nACo®               | ALL <sup>3®</sup>                            | nACo <sup>®</sup>                | ALL <sup>3®</sup>      | AlCrN                    | nACVIc®                  | ALL <sup>3®</sup> -Tribo             |                     |
| < 1000 N/mm <sup>2</sup> | AlTiN               | nACRo®                                       | AITiN                            | SCILVIc <sup>2®</sup>  | nACVIc <sup>®</sup>      | CrTiN                    | nACRo®                               |                     |
| Steels unalloyed         | nACo®               | ALL <sup>4®</sup>                            | nACo®                            | ALL <sup>3®</sup>      | AlCrN                    | nACVIc <sup>®</sup>      | ALL <sup>3®</sup> -Tribo             |                     |
| > 1000 N/mm <sup>2</sup> | AITIN               | nACRo®                                       | AITIN                            | SCILVIc <sup>2®</sup>  | ALL <sup>4®</sup>        | CrN                      | nACRo®                               |                     |
| teels hardened           | nACo®               | nACo®                                        | nACo®                            | nACo <sup>®</sup>      | AlCrN                    |                          |                                      |                     |
| < 55 HRC                 | TiXCo <sup>3®</sup> | TiXCo <sup>4®</sup>                          | TiXCo <sup>3®</sup>              | SCILVIc <sup>2®</sup>  | ALL <sup>4®</sup>        |                          |                                      |                     |
| teels hardened           | TiXCo <sup>3®</sup> | TiXCo <sup>4®</sup>                          | TiXCo <sup>3®</sup>              | TiXCo <sup>4®</sup>    | AlCrN                    |                          |                                      |                     |
| > 55 HRC                 | nACo®               | nACo®                                        | nACo®                            | nACo®                  | TiXCo <sup>4®</sup>      |                          |                                      |                     |
| Stainless steel          | nACo®               | ALL <sup>4®</sup>                            | nACo®                            | ALL <sup>4®</sup>      | ALL <sup>4®</sup> -Tribo | ALL <sup>3®</sup> -Tribo | ALL <sup>3®</sup> -Tribo             |                     |
|                          | nACoX®              | nACRo®                                       | TiXCo <sup>3®</sup>              | SCILVIc <sup>2®</sup>  | CrTi-Vlc <sup>2®</sup>   | CrTi-VIc <sup>2®</sup>   | CrTi-VIc <sup>2®</sup>               |                     |
| Superalloys Ni-based     | nACoX®              | nACoX®                                       | TiXCo <sup>3®</sup>              | nACVIc <sup>®</sup>    | nACVIc <sup>®</sup>      | nACVIc <sup>®</sup>      | nACVIc <sup>®</sup>                  |                     |
|                          | nACo <sup>®</sup>   | ALL <sup>4®</sup>                            | nACoX®                           | SCILVIc <sup>2®</sup>  | CrTi-Vlc <sup>2®</sup>   | CrTi-VIc <sup>2®</sup>   | CrTi-Vlc <sup>2®</sup>               |                     |
| Superalloys Ti-based     | ALL <sup>3®</sup>   | nACRo <sup>®</sup>                           | ALL <sup>4®</sup>                | CrTi-Vlc <sup>2®</sup> | nACVIc <sup>®</sup>      | nACVIc <sup>®</sup>      | nACVIc <sup>®</sup>                  |                     |
|                          | nACo®               | ALL <sup>4®</sup>                            | nACo®                            | SCILVIc <sup>2®</sup>  | CrTi-Vlc <sup>2®</sup>   | CrTi-VIc <sup>2®</sup>   | CrTi-VIc <sup>2®</sup>               | C)                  |
| Cast iron                | nACo <sup>®</sup>   | nACo <sup>®</sup>                            | nACo <sup>®</sup>                | nACRo <sup>®</sup>     |                          |                          |                                      | - WC/C              |
|                          | AITiN               | AITiN                                        | AITIN                            | ALL <sup>4®</sup>      |                          | 100                      |                                      | 2®                  |
| Aluminum Si > 12%        | nACRo <sup>®</sup>  | nACRo <sup>®</sup>                           | nACRo <sup>®</sup>               | nACRo <sup>®</sup>     | AlCrN                    | nACRo <sup>®</sup>       | nACVIc <sup>®</sup>                  | X-VIc <sup>2®</sup> |
|                          | TiCN                | TiCN                                         | TiCN                             | SCILVIc <sup>2®</sup>  | ALL <sup>4®</sup> -Tribo | TiCN                     | CrTi-Vlc <sup>2®</sup>               |                     |
| Aluminum Si < 12%        | TiB <sub>2</sub>    | TiB <sub>2</sub>                             | TiB <sub>2</sub>                 | TiB <sub>2</sub>       | TiB <sub>2</sub>         | TiB <sub>2</sub>         | TiB <sub>2</sub>                     |                     |
|                          | ZrN                 | ZrN                                          | ZrN                              | ZrN                    | ZrN                      | ZrN                      | ZrN                                  |                     |
| Copper                   | 💽 ta:C              | ta:C                                         | 💽 ta:C                           | 💽 ta:C                 | 💽 ta:C                   | 🕎 ta:C                   | ta:C                                 |                     |
|                          | CrN                 | CrN                                          | CrN                              | CrN                    | CrN                      | CrN                      | CrN                                  |                     |
| Bronze, Brass, Plastic   | TiCN                | TiCN                                         | TiCN                             | SCILVIc <sup>2®</sup>  | TiCN                     | TiCN                     | TiCN                                 |                     |
|                          | 🖤 ta:C              | ta:C                                         | 💽 ta:C                           | 🖤 ta:C                 | 🖤 ta:C                   | 💎 ta:C                   | ta:C                                 |                     |
| Graphite                 | 💽 ta:C              | ta:C                                         | 💽 ta:C                           | 💽 ta:C                 |                          |                          |                                      |                     |
|                          | TiXCo <sup>®</sup>  | TiXCo®                                       | TiXCo <sup>®</sup>               | TiXCo®                 |                          |                          |                                      |                     |
| Carbon-fibre             | ta:C                | ta:C                                         | ta:C                             | ta:C                   |                          |                          |                                      |                     |
| composites               | TiXCo®              | TiXCo®                                       | TiXCo®                           | TiXCo®                 |                          |                          |                                      |                     |
| Vood                     |                     |                                              |                                  |                        |                          |                          |                                      |                     |
|                          | nACVIc <sup>®</sup> | nACVIc <sup>®</sup>                          | nACVIc <sup>®</sup>              | nACVIc <sup>®</sup>    |                          |                          |                                      |                     |

**Primary Recommendation:** If available, use this coating for the application.

Use this coating when the primary recommendation is not available. coating B

- Thickness and structure can and should be different according to the different application processes even for the same coating.
- If the exponent x (coating<sup>x</sup>) is not defined, the available machine determines the coating.

12 and al al al al

### The Coating Spectrum for the Standard Machines

|          |           |    |                          | π <sup>m</sup> PLUS     | π                        | <b>411</b> PLUS                        | PL <b>711</b>                               | PL <sup>1011</sup>       | π <b>1511</b>       |     |
|----------|-----------|----|--------------------------|-------------------------|--------------------------|----------------------------------------|---------------------------------------------|--------------------------|---------------------|-----|
|          |           |    |                          |                         | eco                      | with <b>CERC</b> ®<br>or <b>SCIL</b> ® |                                             |                          |                     |     |
|          |           | 1  | TiN                      | TiN <sup>1</sup>        | TiN <sup>1</sup>         |                                        |                                             | TiN <sup>1</sup>         | TiN <sup>1</sup>    |     |
|          |           | 2  | TiCN-grey                | TiCN <sup>2</sup> -grey | TiCN <sup>2</sup> -grey  |                                        |                                             | TiCN <sup>2</sup> -grey  |                     |     |
|          |           | 3  | TiAIN                    | TiAIN <sup>2</sup> -ML  | TiAIN <sup>2</sup>       |                                        |                                             | TiAIN <sup>2</sup> -ML   |                     |     |
|          |           | 4  | AITIN                    | AITiN <sup>2</sup>      | AITiN <sup>2</sup>       | 1                                      |                                             | AITIN <sup>2</sup> -ML   | AITiN <sup>2®</sup> |     |
|          |           | 5  | TiAICN                   | TiAICN <sup>2</sup>     | TiAICN <sup>2</sup>      | and the second                         |                                             | TiAICN <sup>2</sup>      |                     |     |
|          |           | 6  | CrN                      | CrN <sup>1</sup>        | CrN <sup>1</sup>         |                                        |                                             | CrN <sup>1</sup>         |                     |     |
|          | des       | 7  | CrTiN                    | CrTiN <sup>2</sup> -ML  | CrTiN <sup>2</sup>       | 1. 1. 3/2                              |                                             | CrTiN <sup>2</sup>       |                     |     |
| 6        | Nitrides  | 8  | ZrN                      | ZrN <sup>2</sup>        | ZrN <sup>2</sup>         |                                        |                                             | ZrN <sup>2</sup>         |                     |     |
| ARCing   |           | 9  | AICrN                    | AICrN <sup>3®</sup>     | AICrN <sup>3®</sup>      | AICrN <sup>3®</sup> +                  |                                             | AICrN <sup>2</sup>       | AICrN <sup>3®</sup> |     |
| A        |           | 10 | ALL <sup>3®</sup>        |                         | ALL <sup>3®</sup>        |                                        |                                             | ALL <sup>3®</sup>        | ALL <sup>3®</sup>   |     |
|          |           | 11 | ALL <sup>4®</sup>        |                         | ALL <sup>4®</sup> eco    | ALL <sup>4®</sup>                      |                                             |                          | ALL <sup>4®</sup>   |     |
|          |           | 12 | nACo®                    | nACo <sup>2®</sup>      | nACo <sup>2®</sup>       | nACo <sup>4®</sup>                     |                                             | nACo <sup>3®</sup>       | nACo <sup>4®</sup>  |     |
|          |           | 13 | nACRo®                   | nACRo <sup>2®</sup>     | nACRo <sup>2®</sup>      | nACRo <sup>4®</sup>                    |                                             | nACRo <sup>3®</sup>      | nACRo <sup>4®</sup> |     |
|          |           | 14 | TiXCo®                   | TiXCo <sup>3®</sup> eco | TiXCo <sup>3®</sup> eco  | TiXCo <sup>4®</sup>                    |                                             | TiXCo <sup>3®</sup>      | TiXCo <sup>4®</sup> |     |
|          |           | 15 | BorAC-ARC <sup>®</sup>   | 1200                    | BorAC <sup>3®</sup> -ARC |                                        |                                             | BorAC <sup>3®</sup> -ARC |                     |     |
|          | <b>IX</b> | 16 | nACoX®                   |                         |                          | nACoX <sup>4®</sup>                    |                                             |                          |                     |     |
|          | DLC       | 17 | X-VIc®                   | (Ti                     | , AlTi, Cr, CrTi, Z      | r)NVIc <sup>2®</sup>                   |                                             |                          |                     |     |
|          |           | 18 | X-SCILVIc®               |                         |                          | (Ti, Cr, CrTi)-SCILVIc <sup>2</sup>    | <sup>®</sup> (Ti, Cr)-SCILVIc <sup>2®</sup> |                          |                     | DLC |
| bu       | ©         | 19 | WC/C                     |                         |                          | WC/C                                   |                                             |                          |                     |     |
| ittering | SCIL®     | 20 | X-SCIL®                  |                         |                          | TiN <sup>1</sup> -SCIL <sup>®</sup>    | TiN/CrN-SCIL <sup>1®</sup>                  | Real La                  |                     |     |
| Sputt    |           | 21 | TiB₂                     |                         |                          | TiB <sub>2</sub> -SCIL®                |                                             |                          |                     |     |
|          | HS        | 22 | ta:C                     |                         |                          | ta:C #                                 | ta:C                                        |                          |                     | DLC |
| _        |           | 23 | BorAC <sup>®</sup> -LACS |                         |                          | BorAC <sup>3®</sup>                    |                                             |                          |                     |     |
| Hybrid   | LACS®     | 24 | BorCO <sup>®</sup> -LACS |                         |                          | BorCO <sup>4®</sup>                    |                                             |                          |                     |     |
| Ŧ        |           | 25 | AICrN-LACS®              |                         |                          | AICrN-LACS <sup>2®</sup>               |                                             |                          |                     |     |

Coating<sup>x</sup>: The exponent x defines the generation of the coating (according to page 76):

- 1: 1<sup>st</sup> generation coating: Monobblock coating; the adhesion layer is the same like the whole coating (e.g. TiN<sup>1</sup>)
- **2:**  $2^{nd}$  generation coating = Adhesion layer + Core layer (e.g. AlTiN<sup>2</sup>)
- **3:** TripleCoatings:  $3^{rd}$  generation coatings = Adhesion layer + Core layer + Toplayer (e.g. nACo<sup>3</sup>)
- **4:** QuadCoatings:  $4^{th}$  generation coating = TripleCoating + Additional layerblock (e.g. TiXCo<sup>4</sup>)
- If there is no exponent to the coating, the coating family is assumed. The achievable generation depends on the available machine.

#: In development.

HS: HIPIMS (High Performance Impuls Sputtering)

### Coating Types Conventional Coatings

The machine symbols show which machine the coating can be deposited by. The coatable stoichiometries can be different depending on the machine used.



The general-purpose coating for:

- cutting
- forming, injection molding
- tribological applications (for machine components)
- available process with 1, 2 or 4 cathodes



Universal coatings Monoblock (MB) and gradient (G): for stable cut Multilayer (ML): for interrupted cut

 %-Ratio Al/Ti:

 TiAIN-F (ML): ~50/50

 TiAIN-G: ~50/50

 TiAIN-MB: ~50/50

**TiAIN** 



Universal high performance coatings Monoblock (MB) and gradient (G): for stable cut Multilayer (ML): for interrupted cut %-Ratio Al/Ti:

| AITiN-ML:     | ≥60/40 |
|---------------|--------|
| AITiN-G:      | ≥60/40 |
| AITiN-T (MB): | ≥60/40 |
| AITiN-C (MB): | ≥67/33 |

AITÍN

# TiCN-grey



**Conventional carbonitride coating (grey):** 

- for milling and tapping
- · for stamping, punching and forming



Gradient coating for universal use:

- with high hardness
- at low friction coefficient
- for milling and tapping
- for stamping and punching



and their Main Applications Fields

X-VIc<sup>®</sup>: a:C:H:Me; metal doped Carbon Based Diamond Like Coating (CBC) X-VIc<sup>2®</sup>: a:C:H:Si metal free silicon doped Carbon Based Diamond Like Coating (DLC<sup>2</sup>) The CBC and DLC<sup>2</sup> coatings can be deposited as top layers only.





**Duplex coating with nanogradient structure** Basic layer + DLC top layer

- for components
- to avoid built-up edges
- for machining aluminum and titanium alloys
- for forming applications with optimum release

 $TiN^{1} + CBC = cVIc^{\circ}$  $TiN^{1} + DLC^{2} = cVIc^{2\circ}$  $CrN^{1} + DLC^{2} = CROMVIc^{2\circ}$  $CrTiN^{1} + DLC^{2} = CROMTIVIc^{2\circ}$  $ZrN^{2} + DLC^{2} = ZIRVIc^{2}$  $AITiN^{2} + DLC^{2} = ALLVIc^{2\circ}$  $nACRo^{2} + DLC^{2} = nACVIc^{2\circ}$ \*Explanation of different DLC types see page 124

### Multi Components Coatings (Ti, Al, Cr, B, C, B) without Silicon

The machine symbols show which machine the coating can be deposited by. The coatable stoichiometries can be different depending on the machine used.



### AICrN+





Coating for milling of molds & dies Cathodes: Ti-LARC - AI-LARC - Cr-LARC - AITi-CERC Stoichiometry: CrN - AITiN-NL - AICrN-NL

- for inserts and shank tools
- for roughing in hardened materials
- different coloring available
- for flycutters

### ALL<sup>4®</sup> eco



Coating for hobbing in the eco machines  $\pi^{\text{Gall}}$  eco cathodes: CrTi-LARC - Al-LARC - Cr-LARC Stoichiometry: CrN - AlCrN-G - AlCrTiN-NL • for hobs with big diameters

• for cutting abrasive materials



BorAC<sup>3</sup>-ARC NEW B

Boron doped AlCrN coating Cathodes:  $\pi^{\text{GeTT}}$  : AI-LARC - AICrB-LARC - Cr-LARC - non  $\text{PL}^{\text{GETT}}$ : Cr - AICr - AICrB - AICr Stoichometry: CrN - AICrN - AICrBN Deposition with boron alloyed targets (AICrB) • for hobbing and milling



### Nanocomposite Coatings with Silicon

nACRo®

X-VIc<sup>®</sup>: a:C:H:Me; metal doped Carbon Based Diamond Like Coating (CBC) X-VIc<sup>2®</sup>: a:C:H:Si metal free silicon doped Carbon Based Diamond Like Coating (DLC<sup>2</sup>) The CBC and DLC<sup>2</sup> coatings can be deposited as top layers only.

**TiXCo<sup>®</sup>** 



Nanocomposite coating based on Ti and silicon Stoichiometry:

nACo<sup>3®</sup>: TiN - AITiN - AITiN/SiN nACo<sup>4®</sup>: TiN - AITiN-G - AITiN-NL - AITiN/SiN TiAISiN: TiN / TiAISiN

- for drilling, turning, hard milling
- also available with decorative blue top layer



Nanocomposite coating based on Cr and silicon Stoichiometry:

nACRo<sup>3</sup>: CrN - AITiCrN - AICrN/SiN nACRo<sup>4</sup>: CrN - AICrN-G - AICrN-NL - AICrN/SiN

- for "difficult to cut" materials,
- highly alloyed steels, super alloysfor injection molding



Nanocomposite coating with high silicon content Stoichiometry: TiXCo<sup>3</sup>: TiN - nACo - TiN/SiN TiXCo<sup>4</sup>: TiN - nACo - AICrTiN/SiN - TiN/SiN

- for hard machining, milling, drilling, reaming
- for paper cutting
- for superalloys



Oxide coating Cathodes: Ti - AlSi - AlCr<sub>45</sub> - AlTi Stoichiometry: nACoX<sup>4®</sup>: TiN - AlTiN - nACo - AlCrON Application fields: • HSC dry turning and milling



### **Sputtered Coatings**

The machine symbols show which machine the coating can be deposited by. The coatable stoichiometries can be different depending on the machine used.



eleaning batch is necessary after every batch



### Hybrid Coatings Deposited by LACS<sup>®</sup>-Technology

X-VIc<sup>®</sup>: a:C:H:Me; metal doped Carbon Based Diamond Like Coating (CBC) X-VIc<sup>2®</sup>: a:C:H:Si metal free silicon doped Carbon Based Diamond Like Coating (DLC<sup>2</sup>) The CBC and DLC<sup>2</sup> coatings can be deposited as top layers only.









### **Basic Data**

### What is a Coating? A Thin Hard Film.



#### Cost Advantage



### **Production Costs with Solid Carbide Drills**



Typical Coating Surfaces



### **Coating Features**

### Influence of the Most Important Component Materials on Coating's Features

|   | Coating                                     | + Component         | Grain fineness | Decreasing Internal<br>stress | Hardness                        | Wear resistance<br>(abrasive) | Wear resistance<br>(oxidation) | Hot hardness | Heat insulation | Max. usage<br>temperature | Possibility of<br>thickness increase | Decreasing<br>friction | Possibility of<br>Nanocomposite | Low target costs with alloyed targets | Low target costs<br>with unalloyed<br>targets LARC |
|---|---------------------------------------------|---------------------|----------------|-------------------------------|---------------------------------|-------------------------------|--------------------------------|--------------|-----------------|---------------------------|--------------------------------------|------------------------|---------------------------------|---------------------------------------|----------------------------------------------------|
| T | i+N=TiN Basic coating                       | + N                 | 0              | -                             | +                               | +                             | +                              | 0            | 0               | 0                         | -                                    | 0                      | no                              | 0                                     | 0                                                  |
|   | TiCN                                        | +C                  | 0              |                               | ++                              | ++                            | -                              | -            |                 | -                         |                                      | ++                     | no                              | 0                                     | 0                                                  |
|   | typically <b>TiAICN</b><br>with Al~20-25%   | + AI                | (+)            | +                             | -                               | -                             | +                              | +            | +               | +                         | +                                    | -                      | no                              | -                                     | 0                                                  |
|   | typically <b>TiAIN</b>                      | <b>+AI</b> / (-C)   | +              | -                             | + if AI $<$ X% / - if AI $>$ X% | +                             | +                              | +            | ++              | +                         | -                                    | -                      | no                              | -                                     | +                                                  |
|   | typically AlTiCrN                           | +Cr                 | -              | +                             | +                               | +                             | +                              | +            | +               | (+)                       | +                                    | -                      | no                              | -                                     | (-)                                                |
|   | typically <b>AICrN</b><br>Cr~30%            | <b>+ Cr</b> / (-Ti) |                | +                             | (+)                             | ++                            | (+)                            | +            | +               | (+)                       | +                                    | (-)                    | no                              |                                       | -                                                  |
| C | typically TiAIN/SiN<br>AIN/SiN, AICrTiN/SiN | +Si                 | ++             | (+)                           | ++                              | +                             | ++                             | ++           | ++              | ++                        | 0                                    | 0                      | yes                             |                                       | +                                                  |

+ means mainly positive change in the user's point of view - means mainly negative change in user's point of view X is approximately around 65%

### Adhesion

250





Average values from min. 10 measurements with deviation; <5% Scratch length: 70 mm - scratch speed: 0.4 - 60 mm/min Measured on tungsten carbide K40, by CSEM, Neuchâtel, Switzerland

First Crack, Lc<sub>2</sub> [N] Delamination, Lc<sub>3</sub> [N]

### Hardness



100 150 200 displacement [nm]

### **Absorption of Cracks by Multilayer Structure**





Source: TOPNANO-Project, EPF Lausanne, Switzerland Measuring hardness by nanoindentation

### Nanostructures Coating Features

### Nanogradients

### Variation of Nanohardness by Gas Inlet

The coating structure is continuously changed. The coating composition can be modified by gas inlet or metallic content variation.





#### Nanolayers

The coating hardness depends on the thickness period of the sublayers. The optimum period of the superlattices increases hardness enormously.



#### hardness [GPa] 60 high C content for high hardness and edge stability 50 40 30 TiN cover layer reduced C content for high base toughness -20 10 0 1000 0 200 400 600 800 displacement [nm]

### Hardness of Nanocomposite with Nanolayer Structure



### **Nanocomposites** Grain Size Comparison: $Ti_{1,x}AI_xN^2$ and $nACo^2 = Ti_{1,x}AI_xN/SiN$



Modelling view of the 5 nm average grain size sample at an indentation depth of 20 Ä. The Nanocomposite coatings have a higher hardness than conventional coatings. Because the amorphous SiN matrix enwraps (infoldes, covers) the nanocrystalline grains and avoids their growth.



Calculated from XRD data using the Scherrer Equation Same linear behavior but smaller crystallites than in the Cr-based system

### **Coating Features**



### Drilling, Milling, Reaming





### Hobbing

### **Influence of Coating Thickness**

- $3.3\mu$ m vs.  $4\mu$ m (at the center of the fly-cutter's tooth head)
- 20% higher thickness tool life time doubled!
- Higher coating thickness delays crater wear





Thickness measured by Calotest at center of the head Cutting face

Cross section SEM

### **Conventional Coatings**

### **Drilling with Solid Carbide**



#### **Tool Life Comparison**



Work piece: wheel hub, Material: 38MnV35,  $R_m$ =800 N/mm<sup>2</sup>, Ext. coolant: emulsion 7%, carbide K40UF, d=12.6 mm,  $a_p$ =13.5 mm,  $v_c$ =78 m/min, f=0.25 mm/rev. - Source: Daimler, Germany

### **Aluminum Extrusion**



### **Tool Life Comparison**



Layer sequence in μm: 1xTiN=1.3 - 9x(TiN=0.25 / CrN=0.4) - 1xCrN=0.35 Mat.: Al 6012; Total coating thickness: 7.5 μm - Source: Metalba, Italy

with selectable top color

deposited by LARC®-technology

with very good chemical resistance

· with very fine multilayer structure and surface

### **Tool Holders**



Coating of milling head holders with  $CrTiN^2$  & golden top color by the  $\pi^{aoa}$  configuration. Source: Fraisa, Bellach, Switzerland

### **Coating Tool Holders Against Corrosion**

- for molds and dies
- for machine components
- for tool holders
- for aluminum cutting and forming
- with high hardness and toughness



Coating thickness = 4  $\mu$ m



Mold for mobile phone coated by CrN toplayer

### Applications



### **High Performance Cutting with Optimized Edge Geometries**

Impact of edge preperation on coated solid carbide end mills. "The better the coating, the more important the edge preperation."





Applications



Material: 1.7225 / 42CrMo4 - Coolant: Emulsion Tools: M6 - PM-HSS-E - v<sub>e</sub> = 15 m/min - a<sub>e</sub> = 12 mm - blind holes **95** 

### Milling

### Nanocomposites nACo<sup>®</sup>: AITiN/SiN

### Nanocomposites Heat Resistance Comparison

Composite of non-mixable components. hardness [GPa] 60 Nanocrystalline grains are embedded into an cobalt diffusion of tungsten carbide limits thermal stability of coated tool amorphous matrix. 50 Si<sub>3</sub>N<sub>4</sub> 40 30 AITIN 20 3nm 10 TiN<sup>1</sup> AlTiN<sup>2</sup> AlCrN<sup>2</sup> nACo<sup>3®</sup>  $\alpha$ -Si<sub>3</sub>N 0 nc-AlTiN 0 200 400 800 1000 1200 1400 600 annealing temperature [°C]

**Influence of the Coating Structure** 

#### Gear Cutting with Inserts

# and a second second





#### Roughing insert Finishing insert roughing finishing tool life; [gears] 000 100 100 tool life; [gears] 300 100 100 nACo<sup>2</sup> nACo<sup>2</sup> 0 0 AITiN<sup>2</sup> AITiN<sup>2</sup> gradient gradient multilayer multilayer

Monolayer for finishing: Higher hardness increases tool life.

### Drilling



### **Productivity Improvement with Higher Speed and Feed**



Work piece material: GGG40 – ap=60 mm Solid carbide step drill: d=7.1/12 mm – Internal cooling with 70 bar - 5 % emulsion Source: Sauer Danfoss, Steerings, Denmark

### **Applications**

### Bevel Gear Hobbing Tool Life Comparison





Milling of Bevel gears with carbide Tri-Ac hobbing cutters Source: Gleason, Rochester, NY, USA

### Drilling Tool Life Comparison



### Plunging Wear Comparison





Material: IN100 - Nickel Base - 12Cr-18Co-3.2Mo - 4.3Ti-5.0Al-0.8V-0.02B-0.06Zr Tool: Carbide insert - Minimaster MM12; D=12 mm, r=2 mm, z=2 v<sub>c</sub>= 21 - 30 m/min, fz= 0,05 mm, a<sub>p</sub>=20 mm, a<sub>p</sub>=3 mm, turbine milling Source: EU R&D project Macharena - Volvo Aero Norge AS

97

### Nanocomposites nACRo®:AICrN/SiN

#### **Injection Molding** Aluminum Injection Mold with Dedicated Multilayer-nACRo



Source: Gibbs Die Casting Ltd. Retsag, Hungary

#### **Rotating Stamping Tool Life Comparison**



Source; GFE, Schmalkalden, Germany Fa. Thyssen Krupp Presta Ilsenburg, Germany

#### Slotting **Tool Life Comparison in Inconel 718**



35.0 cutting volume until tool life end [cm<sup>3</sup>] AICrN<sup>3</sup>  $\square$  TiAIN<sup>2</sup> 30.0  $\Box$  AlTiN<sup>2</sup> 25.0 ■ nACo<sup>3®</sup> nACRo<sup>3®</sup> 20.0 15.0 10.0 5.0 0.0 average

> Tools: FRAISA 5325.450 NX-V, Ø10 mm z=4, helix angle 38/41° Conditions:  $a_e = 10 \text{ mm}$ ,  $a_p = 2.5 \text{ mm}$ ,  $v_c = 25 \text{m/min}$ ,  $f_z = 0.025 \text{ mm}$ Source: EU R&D project MACHERENA

### **Applications**

### Punching Tool Life Comparison



### Turning Turning



Measured by IWF, TU Berlin, EU R&D project PM-MACH

#### Sawing



#### **Tool Life Comparison**



Solid carbide saw blades, Ø 125 x 3.6 mm, z = 100 - sintered workpiece material: Co1 n = 300 RPM -  $v_r = 800$  mm/min -  $a_n = 35$  mm, coolant: emulsion 7% - Source: Prétat, Selzach, CH 99

### **Cathode Configurations** TripleCoatings<sup>3®</sup>



### AICrN<sup>3</sup>: For Dry Cutting Abrasive Materials

| Stoichiometry: CrN - AI/CrN-ML - AICrN |                  |                            |                                      |  |  |  |  |  |  |  |
|----------------------------------------|------------------|----------------------------|--------------------------------------|--|--|--|--|--|--|--|
| π <b>n P</b> lus                       | : 1: Al – 2: Cr  |                            |                                      |  |  |  |  |  |  |  |
| π <b>411</b>                           | :1: none - 2: Al | — 3: Cr                    | - 4: AICr <sub>30</sub>              |  |  |  |  |  |  |  |
| PL                                     | :1:Cr – 2:Al     | Cr <sub>36</sub> – 3: none | - 4: AICr <sub>36</sub>              |  |  |  |  |  |  |  |
| π"=11                                  | :1: Ti — 2: Al   | – 3: Cr                    | $-4: AICr_{_{30}} - 5: AICr_{_{30}}$ |  |  |  |  |  |  |  |

AICrN<sup>3</sup>+: AICrN<sup>3</sup> doped by titanium: TiN - AITiN - AI/CrN-ML  $\pi^{4}$  : 1: Ti - 2: Al - 3: Cr - 4: AlTi<sub>33</sub>

### ALL<sup>3®</sup>: AITiCrN<sup>3</sup>: Universal for Cutting and Forming

Stoichiometry: Ti(Cr)N - AI/CrN-ML - AITiCrN TIPLUS :1: Al – 2: CrTi<sub>15</sub> π411 - 3: Cr - 4: none :1: Ti – 2: Al  $\pi^{2} = 1: \text{Ti} - 2: \text{Al} - 3: \text{Cr} - 4: \text{ none}$  $= 1: \text{Cr} - 2: \text{AlTi}_{33} - 3: \text{AlTi}_{33} - 4: \text{AlCr}_{36} \text{ (AlTiCrN-G)}$ **PL**<sup>1017</sup> : 1: Cr - 2: AITi<sub>33</sub> - 3: Cr - 4: AITi<sub>33</sub> (AITiCrN-ML) :1: Ti - 2: Al - 3: Cr - 4: AlTi<sub>33</sub> - 5: AlTi π1511

### nACo<sup>3®</sup>: For Universal Use, Turning, Drilling

| Stoichiometry: TiN - AITiN - nACo |        |                         |                           |                                         |  |  |  |  |  |
|-----------------------------------|--------|-------------------------|---------------------------|-----------------------------------------|--|--|--|--|--|
| π <b>"""</b>                      | :1: Ti | – 2: AlSi <sub>18</sub> | - 3: none                 | - 4: AITi <sub>33</sub>                 |  |  |  |  |  |
| PL <sup>1011</sup>                | :1: Ti | – 2: AlTi <sub>33</sub> | - 3: AITi <sub>30</sub> S | i <sub>10</sub> - 4: AITi <sub>33</sub> |  |  |  |  |  |

### nACRo<sup>3®</sup>: For Superalloys, Milling, Hobbing

| Stoichiometry: CrN - AITiCrN-ML - nACRo |        |                            |                     |                         |  |  |  |  |  |
|-----------------------------------------|--------|----------------------------|---------------------|-------------------------|--|--|--|--|--|
| π <b>411</b>                            | :1: Ti | - 2: AlSi <sub>18</sub>    | – 3: Cr             | – 4: AITi <sub>33</sub> |  |  |  |  |  |
| PL                                      | :1: Cr | - 2: AlCr <sub>30</sub> Si | <sub>0</sub> – 3:Cr | - 4:AICr <sub>36</sub>  |  |  |  |  |  |

### TiXCo<sup>3®</sup>: For Superhard Machining, Milling, Drilling

| Stoichiometry: TiN - nACo - TiSiN |                   |                         |                         |                         |  |  |  |  |  |  |
|-----------------------------------|-------------------|-------------------------|-------------------------|-------------------------|--|--|--|--|--|--|
| π <sup>111</sup> PLUS             | :1:Al             | - 2: TiSi <sub>20</sub> | (TiXCo <sup>3®</sup> @@ | <b>co</b> )             |  |  |  |  |  |  |
| π <b>411</b> eco                  | <b>&gt;</b> :1:Ti | – 2: Al                 | - 3: TiSi <sub>20</sub> | - 4: none               |  |  |  |  |  |  |
| π4-11                             | :1:Ti             | – 2: Al                 | – 3: TiSi <sub>20</sub> | – 4: AlTi <sub>33</sub> |  |  |  |  |  |  |
| PL                                | :1:Ti             | – 2: AlTi <sub>33</sub> | - 3: TiSi <sub>20</sub> | – 4: AITi <sub>33</sub> |  |  |  |  |  |  |

### BorAC<sup>3®</sup>: For Milling and Hobbing

#### Stoichometry: CrN - AICrN - AICrTiBN $\pi$

| π411 есс           | : 1: AICr | B – 2: Al  | – 3: Cr | (BorAC <sup>3®</sup> -A | RC)                        |
|--------------------|-----------|------------|---------|-------------------------|----------------------------|
| π <b>422</b>       | : 1: Ti   | – 2: Al    | – 3: Cr | - 4: TiB <sub>2</sub>   |                            |
| PL <sup>1011</sup> | :1:Ti     | – 2: AlCrB | – 3: Cr | - 4: AlCrB              | (BorAC <sup>3®</sup> -ARC) |













### **QUAD Coatings**<sup>4®</sup> GUADCoatings<sup>13</sup>

### ALL<sup>4®</sup>: AICrTiN<sup>4</sup>: Universal for Cutting and Forming

CrTiN - AICrTiN-G - AI/CrN-ML - AICrTiN - (CrCN optional)  $\pi^{4}$  : 1: Ti - 2: Al - 3: Cr - 4: AlCr<sub>30</sub> π<sup>2527</sup>:1:Ti – 2:Al - 3: Cr - 4: AICr<sub>30</sub> - 5: AICr<sub>30</sub>

### ALL<sup>4®</sup>eco : Dedicated for Big Hobs

CrTiN - AICrTiN-G - AI/CrN-ML - AICrTiN - (CrCN optional)  $\pi^{477}$ : 1: CrTi<sub>15</sub> – 2: Al – 3: Cr – 4: none

### nACo<sup>4®</sup>: For Universal Use, Turning, Drilling

TiN - AITiN-G - AITiN-ML - nACo  $\pi^{422}$  : 1: Ti - 2: Al - 3: AlSi<sub>18</sub> - 4: AlTi<sub>33</sub>  $\pi^{2527}$ : 1: Ti – 2: Al – 3: TiSi<sub>20</sub> – 4: AlTi<sub>33</sub> – 5: AlTi<sub>33</sub>

### nACRo<sup>4®</sup>: For Superalloys, Milling, Hobbing

CrN - AICrN-G - AICrN-ML - nACRo  $\pi^{422}$ : 1: Cr - 2: AlSi<sub>18</sub> - 3: Cr - 4: AlCr<sub>30</sub>  $\pi^{2522}$ : 1: none - 2: AlSi<sub>18</sub> - 3: Cr - 4: AlCr<sub>20</sub> - 5: AlCr<sub>20</sub>

### TiXCo<sup>4®</sup>: For Superhard Machining

TiN - nACo-G - AlTiCrN/SiN - TiSiN  $\pi^{4}$  : 1: Ti - 2: Al - 3: TiSi<sub>20</sub> - 4: AlCr<sub>30</sub>  $\pi^{2527}$ : 1: Ti – 2: Al – 3: TiSi<sub>20</sub> – 4: AlTi<sub>33</sub> – 5: AlTi<sub>33</sub>

### nACoX<sup>4®</sup>: For HSC Dry Turning and Milling

TiN - AITiN - nACo - AICrON  $\pi^{412}$ : 1: Ti – 2: AlSi<sub>18</sub> – 3: AlCr<sub>45</sub> – 4: AlTi<sub>33</sub>

### BorCO<sup>4®</sup>: For Hard Machining and for Superallovs

Stoicometry: CrTiSiN - AICrN - AICrTiBN - TiSiN  $\pi^{427}$  : 1: TiSi<sub>20</sub> - 2:Al - 3:Cr - 4:TiB<sub>2</sub>















### TripleCoatings<sup>3®</sup> *nACo<sup>3®</sup> & nACRo<sup>3®</sup>*



#### **Benchmarking in High Alloyed Steel** Wear VB<sub>max</sub> after 480 milling operations Wear VB<sub>max</sub> after 240 milling operations 500 25.00 23.59 432 450 395 391 400 20.00 360 350 323 306 299 300 15.00 241 11.78 250 10.13 9.60 200 10.00 7.30 7.00 150 100 5.00 2.26 50 1 80 0.00 0 nACo<sup>4</sup> Market 1 Market 2 AlTiCrN<sup>3</sup> Market 3 Market 4 Market 5 nACo<sup>3</sup> AITiN+AICrSiN AICrN-P AITiN AITiN **AITiN** dedicated Material: SUS316 mobile phone housing – Solid Carbide End Mill, D4 - z=4 – cutting length 6 mm – a,=0.1 a<sub>e</sub>=4.0 - v<sub>e</sub>=100.53 m/min - n=8000 min-1 - f<sub>z</sub>=0,0625 mm/z - f=0,2500 mm/rev - v<sub>e</sub>=2000 mm/min - Coolant: emulsion Source: Füllanti, Shenzen, China

Turning States and Triple Coatings<sup>3®</sup> in Tool Life Comparison to CVD-Coating



 $\label{eq:constraint} \begin{array}{l} \mbox{Material: stainless Steel AISI 316L - Inserts:Sandvik CNMG 12 04 08} \\ v_c = 290 \mbox{ m/min- ap} = 0.8 \mbox{ mm - f} = 0.24 \mbox{ mm/rev - Dry} \\ \mbox{Tool life criteria: VBmax} \leq 300 \mbox{ } \mbox{ mm - KTmax} \leq 130 \mbox{ } \mbox{ mm - N8 (Ra < 3.2 \mbox{ mm - Rz < 12.5 \mbox{ mm})} \\ \mbox{ Source: EIG, Geneva, Switzerland} \end{array}$ 



Milling

### **Applications**

### Turning - Grooving Tool Life Comparison





### Drilling Tool Life Comparison



feed rate  $v_r = 895$  mm/min; coolant 8% – Source: TDC Dalian, China

### **Cooled Milling in Stainless Steel nACRo<sup>3®</sup>: Highest resistance against temperature changes**



 $\begin{array}{l} \mbox{Tool: Milling head with SDMT inserts - Cooling: Emulsion} \\ \mbox{Material: Stainless steel - } A500 = <1.4301 > X5CrNi18-10 \\ \mbox{vc} = 200 \mbox{ m/min - n} = 1273 \mbox{ U/min - ap} = 3 \mbox{ mm - ae} = 32 \mbox{ mm - fz} = 0,2 \mbox{ mm} \\ \end{array}$ 



# TripleCoatings<sup>3®</sup> *TiXCo<sup>3®</sup> for Hard Tasks*

#### Hardened Steel with 54 HRC Milling with TiXCo<sup>3®</sup>







v<sub>c</sub>=100 m/min - a<sub>c</sub>=0.3 mm - a<sub>c</sub>=5.5 mm - f<sub>z</sub>=0.165 mm - MQL

#### **Super Hard Milling** Wear Comparison

VB [µm]



183 🛛 VBave 📃 VBmax 180 160 140 120 102 97 100 86 72 80 67 60 60 44 40 20 0 TiXCo<sup>3®</sup> nACRo<sup>3®</sup> AITiN (market) AlTiN + AlCrN (market) Torus end mill in cold-working steel X210Cr12 (1.2080) - 61.5 HRCØ 8 mm - z=4 - ap=0.1mm - ae=3mm vc=100m



### min-1 - n=4000min-1 - fz=0.2mm - vf=3200mm min-1 - dry - Source: Development project LMT Fette-PLATIT



### Milling in Stainless Steel Tool Life Comparison



Tool: End mills - d=10 mm - Criteria: wear <= 0.3 mm Workpiece: stainless steel - X2CrNiMo - Coolant: emulsion v\_=250 m/min, f=3000 mm/min, a\_=0.3 mm, a\_=4 mm

### TripleCoatings<sup>3®</sup> Applications with PL<sup>1011</sup>

### Hobbing



### **Tool Life Comparison**



Work piece material: 34CrNiMo6 (1.6582) vc=45m/min, fn=0.12 mm/rev, RPM=500 Coolant with oil - Source: Unimerco, Sunds, DK

### **Gear Cutting**



#### **Tool Life Comparison**



Criteria of tool life: Series of 200 parts without profile failure (very tight tolerances)

Sawing



#### **Tool Life Comparison**



RPM=42; SFPM=242 coolant emulsion; Source: Tru-Cut, Cleveland, USA **105** 

### **UADCoatings**<sup>4®</sup> *nACo***<sup>4®</sup> &** *nACRo***<sup>4®</sup>**

#### Using Coating Material Components to Increase Performance



Measured by the 1-tooth test at the University Magdeburg, IFQ, Germany

### Hobbing Tool Life Comparison at Dry Hobbing



Measured at the University of Magdeburg, Germany

### Milling Wear Comparison at Hard Milling with Inserts



Workpiece: Wave profile - Material: X155CrVMo12 - 1.2379 - hardened to 55 HRC - coolant: IC-air Tool: WPR 16-SF -  $v_c$ =240 m/min -  $f_z$ =0.2 mm -  $v_f$ =1910 mm/min -  $a_p$ =0.2 mm -  $a_e$ =0.3mm Tested by LMT-Kieninger, Lahr, Germany



### **Applications**

### Drilling Tool Life Comparison in High Strength Steel





### Milling Wear Comparison in Hot Working Steel, 54HRC



Coolant: Emulsion - Coating thickness: 2  $\mu$ m - Edge radius: 7  $\mu$ m - Cutting length: 27m Work piece material: Hot working steel - 1.2344 / SKD61 - 54 HRC Source: Tool manufacturer, China

### Wear Behaviour Comparison at Hard Milling after $t_c = 140$ min



Work piece: 1.2379 (60 HRC) – Tool: d=10 mm – ball nose – Roughing:  $v_c=87 \text{ m/min} - f_z=0.065 - a_p=0.4 \text{ mm} - a_e=0.4 \text{ mm} - \text{Finishing: } v_c=167 \text{ m/min} - f_z=0.07 \text{ mm} - a_p=0.12 \text{ mm} - a_e=0.12 \text{ mm} - \text{Source: Fraisa, Bellach, Switzerland}$ 

# UAD Coatings<sup>4®</sup> ALL<sup>4®</sup>

ALL<sup>4®</sup>



### Material: Tool steel, 1.2312, HRC 28.4, a, =14 mm, a, =0.6 mm, v, =177 m/min

Tools: d=8 mm, Fraisa NB-NVDS, z=4, f,=0.18 mm/tooth - dry



#### A, B, C, D, F, G Market coatings

ALL<sup>4®</sup>: AICrTiN<sup>4®</sup>

Machine: DMC80 linear - Material: 42CrMo4 160x50x300 - Roughing - 6% FU60 external emulsion - Tool: H4038217-3-0.2 D3 R0,2  $z4 - D_c = 3mm$ 



#### **Tool Life Comparison at Roughing in Nickel Based Material**

Work piece: thin-walles bars from Inconel 718 – Tool: Solid carbide torus end mill d=10 mm - z=4 $v_c = 90 \text{ m/min} - a_e = 0.1 \text{ mm} - a_o = 12 \text{ mm} - f_z = 0.21 \text{ mm/t}$ 

Coolant: Blaser Swisslube B-Cool 9665 - Measured at GFE Schmalkalden, Germany





### **Trochoidal Milling**

108

### **Applications**

### Wear Comparison at Milling with QuadCoatings<sup>4®</sup>





Tools: Solid carbide end mills  $- d=8 \text{ mm} - z=4 \text{ - ap}=5 \text{ mm} - a=3.5 \text{ mm} - vc=110 \text{ m/min} - f=0.24 \text{ mm/rev} - Work piece material: DIN 1.2085 - X33CrS16 - 31 HRC - External minimum lubrication}$ 

### **Tool Life Comparison**



### Applications with ALL<sup>4®</sup> + Tribo at Fine Blanking



Material of punches BÖEHLER S600 (58-60 Hrc) & K890 (60-62 HRc) Cutting punches with oil for cooling agent – Strokes / min: 25 to 40

Work piece material: S420-MC (EN-10149-2) & S275JR (EN-10125) - Thickness of material 4.5 to 7 mm Source: HNCF, Italy

### **Thread Forming**



### Spindle Torque Measured in High Strength Steel



 $\label{eq:Work piece material: 40CrMnMo7 - Rm = 945 N/mm2} \end{tabular} Tool: M8-InnoForm1-Z - HSSE 23/1 - $\overline{0}7.4 - ap = 1.5xd - Minimum quantity lubrication (MQL)} \end{tabular} \end{tabular}$ 

### **Oxide and Oxynitride** as QUADCoatings<sup>4®</sup>

### **Goal of the Oxide and Oxynitride Coatings**

**Separator** to decrease chemical affinity between tool and workpiece in dry cutting processes at high temperature

#### Wear protection

- against adhesive wear
- against abrasive wear
- stable against further oxidation, avoiding oxygen diffusion
- chemical and thermal insulation

#### **Decreasing friction**

- At temperatures over 1000°C
- Reducing build-up edges and
- Reducing material interdiffusion in the tribological contact zone
- chemical indifference

### Layer Architecture

### covering nitride; AICrN, TiAIN, optional oxide or oxynitride; (AI,Cr)<sub>2</sub>O<sub>3</sub> - (AI,Cr)(O,N)

- ·· Nanocomposite; nACo, nACRo
- ••• Nitride; AlCrN, TiAlN
- adhesion layer
- ••• tungsten carbide

#### Layer-architecture

- "Sandwich" like at CVD
- Metal nitride basis necessary, to avoid cracks and plastic deformation

### Features of nACoX<sup>4®</sup>

- Nitrogen to oxygen ratio: N/0: 50/50% – 80/20%
- Typical coating thickness on turning inserts: 4 - 18 μm
- Typical total hardness: 30 GPa
- Typical Young's modulus: ~400 GPa



### **Depth Profiles of nACoX<sup>4</sup>**



EDX (Energy-dispersive X-Ray spectroscopy) Element Map shows the distribution of the elements in the depth of the coating



### **Applications**

### OXI-Option: Oxide Quad-Coatings versus CVD at Turning of High Alloyed Steel





### SME can more than compete with CVD using their own, thick PVD-OXI-coatings!

### Drilling in Difficult to Cut Austempered Ductile Cast Iron with Oxynitride Coatings



### Profile Milling with Inserts - Roughing





 $\label{eq:states} \begin{array}{l} \mbox{Material 1.2379} - \mbox{Rm} = 1000 \mbox{ N/mm2} \\ \mbox{vc} = 240 \mbox{ m/min} - \mbox{fz} = 0.4 \mbox{mm} \mbox{ ap} = 1.5 \mbox{ mm} - \mbox{ ae} = 1 \mbox{ mm} \\ \mbox{Coolant: internal air} \end{array}$ 

# SCIL<sup>®</sup> Coatings and Their Applications



Sputtering power: Up to 30kW - No columnar structure - Reactive and non-reactive processes Growth rate in reactive process:  $\approx 2 \,\mu$ m/h in 3-fold rotation Application fields: gun drilling, tapping, decorative coatings

### **Thread Forming**



|                            | Adhesion layer          | Core Layer              | Top layer               |
|----------------------------|-------------------------|-------------------------|-------------------------|
|                            | Ti - TiN                | TiCN                    | TiCC                    |
| Total thickness ( $\mu$ m) | 1. Thickness [ $\mu$ m] | 2. Thickness [ $\mu$ m] | 3. Thickness [ $\mu$ m] |
| 2.59                       | 1.16                    | 0.41                    | 1.02                    |
|                            |                         |                         |                         |

**TiCN-SCIL<sup>®</sup> Torque and Force Comparison** 



**Micro Tooling** 



### SCILVIc<sup>2®</sup>: Structure and Roughness



Fz

Mz

### **Applications**

### TiB,-SCIL<sup>®</sup> and Its Characteristical Features

- · Tailored for aluminum machining • Preferable for softer, forgeable
- alloys with lower Si contents ( $\sim$ 6%) · For machine components with
  - · high hardness
  - · low friction coefficient
    - TiB<sub>2</sub> characteristics:
    - Thickness =  $1.3 \,\mu \text{m}$
    - H = 32.8 GPa
    - E = 515 GPa
    - Lc<sub>2</sub> HM > 100 N
    - Lc, HSS > 51.8 N
- · Homogeneous surface remains after coating
- · Ideal cutting edge coverage
- · No set-free of cutting edges even post treatment applied



FRAISA AX-RV2 Torus end mill; ø12 mm; r = 2.5 mm; Z=2; emulsion 5-6%  $Q = 120 \text{ cm}^3/\text{min}$ ; milling distance/cycle = 2.63 m; Machining Center DMC 64 V linear Al alloy AlZnMgCu1.5 (Alloy 7075); State = hard; 156 HB; a<sub>n</sub> = 6 mm; a<sub>n</sub> = 5 mm; v<sub>n</sub> = 377 m/min; n = 10'000 min-1  $f_r = 0.20 \text{ mm/Z}; f = 0.40 \text{ mm/rev}; v_f = 4'000 \text{ mm/min}$ 

### WC/C-SCIL<sup>®</sup> and its Characteristical Features



Machine components coated by WC/C-SCIL®



Coating thickness: 1.44  $\mu$ m



 $S_{a}{=}$  3.5  $\pm$  0.9 nm -  $S_{q}{=}$  9.3 +-5.6 nm

 $H \sim$  up to 20 GPa - Y=240 GPa

SCIL 8 LACS

### Hybrid LACS<sup>®</sup> Coatings

### Decreasing Grain Size and Increasing Hardness with LACS®-Technology for BorAC3®-Coating (AICrTiN/BN)





XRD: 111 Grain size changes 57 nm → 16 nm with increasing Boron content Source: C. Tritremmel et al. Surface & Coatings 213 p.1-7

### Interrelation between Hardness, Internal Stress and Boron Content



### Using Boron as a Material Component for Optimizing the Coatings' Internal Stress



AICrN/BN coating with triple structure measured by energy dispersed by X-Ray spectroscopy Source: University Freiberg, Germany



 $\begin{array}{l} \mbox{Mat.: Tool steel - } 1.2085 - X33 \mbox{CrS16} - \mbox{HRC } 29.2 - a_{\rm p} = 5 \mbox{ mm} - a_{\rm e} = 02.5 \mbox{ mm} - v_{\rm c} = 120 \mbox{ m/min} \\ \mbox{Tools: } d = 8 \mbox{mm} - \mbox{Fraisa } NX-V \mbox{ Torus} - d = 2.2 \mbox{ mm} - z = 4 - f_z = 0.06 \mbox{ mm/tooth} - \mbox{MQL} \\ \mbox{Average wear} = (\mbox{Max. margin wear} + \mbox{VBmax (clearence wear)} + \mbox{Top edge wear} + \mbox{ corner wear}) / 4 \end{array}$ 

### **Applications for Milling and Drilling**

### Using LACS<sup>®</sup>-Technology with Boron and Silicon at Milling Cold Working Steel



working steel, 1.2379 (X155CrivioV 5-1),  $a_p = 10$  mm,  $a_e = 8$  mm,  $v_c = 160$  m/min z =4, f<sub>z</sub> =0.06 mm/rev – dry

### Using LACS-Technology: BorAC<sup>®</sup> - AICrN/BN: Cutting Performance at Milling



Cutting Performance Measured and Calculated as Cutting Time [min] / Average Wear  $[\mu m]$ 



 $\begin{array}{l} \mbox{Mat.: Tool steel} - 1.2085 - X33 \mbox{CrS16} - \mbox{HRC } 29.2 - a_{p} = 5 \mbox{ mm} - a_{e} = 02.5 \mbox{ mm} - v_{c} = 120 \mbox{ m/min} \\ \mbox{Tools: } d = 8 \mbox{ mm} - \mbox{Fraisa } NX-V \mbox{ Torus } - d = 2.2 \mbox{ mm} - z = 4 - f_{z} = 0.06 \mbox{ mm/tooth} - \mbox{MQL} \\ \mbox{Average wear} = (\mbox{Max. margin wear} + \mbox{VBmax (clearence wear}) + \mbox{Top edge wear} + \mbox{ corner wear}) / 4 \end{array}$ 



#### Drill's Corner Wear after 2178 Holes

Measured at GFE, Schmalkalden, Germany115

### Hybrid LACS<sup>®</sup> Coatings for Hobbing



LACS-AICrN/BN protects crater wear best

 $v_c = 180 \text{ m/min} - f_s = 3.6 \text{ mm/rev}$ , max. chip thickness = 0.20 mm



 $v_c = 220$  m/min f<sub>a</sub> = -6,4 mm/rev, hcu, max = 0,24 mm, \*VB<sub>max</sub> reached



### **Applications for Hard Milling and Reaming**



### Using LACS<sup>®</sup>-Technology with Boron and Silicon at Hard Milling (63 HRC)

- Comparing: ARC and LACS<sup>®</sup> with sputtering references
- HIPIMS and ARC on a similar performance level in this test
- Lowest wear for the LACS<sup>®</sup> coating: BorCO<sup>4®</sup>





 $\label{eq:matrix} \begin{array}{l} \mbox{Material: Cold working steel, 1.2379 (SKD11), HRC 55, a_{_p} = 0.2mm, a_{_e} = 0.3mm, v_{_c} = 200 \mbox{m/min} \\ \mbox{Tools: LMT-Kieninger milling inserts, z = 2, f_{_z} = 0.2mm/teeth - dry } \end{array}$ 

Using LACS<sup>®</sup>-Technology



### BorAC<sup>3®</sup> - AICrN/BN: Wear Behavior at Reaming



Picture source: Mauth GmbH, Oberndorf, Germany

Cold working steel –  $R_m$ =500 N/mm<sup>2</sup> — Tolerance: H7 d=14mm - v<sub>e</sub>=150 m/min - a<sub>e</sub>=0.125 - f<sub>e</sub>=0.06 mm - MQL

# **Developed** by/with PLATIT's Users

### Hobbing Tool Life Comparison





Material: 100Cr6 800-900 N/mm2 - Tools: HSS-PM4 - Modul=2.5 - vc=150 m/min Developed by Liss, Roznov, Czech Republic

### Thread forming



### **Tool Life Comparison**



Work piece materials: Materials with high strength Developed with LMT Fette, Schwarzenbek, Germany Source: Werkzeugtechnik: 117 – Nov/2010 – p.71

Tapping



#### **Tool Life Comparison**



Work piece materials: cast iron and non steel materials Developed by LMT Fette, Schwarzenbek, Germany Source: Werkzeugtechnik: 117 – Nov/2010 – p.71

### **Applications**

### Mold and Die Milling Wear Comparison after 1.0 h of Roughing



250 VB-average [µm] 200 150 150 100 50 AlCrN<sup>3</sup> Nanomold gold

Work piece material: cold working steel -  $Rm = 1000 \text{ N/mm}^2$  - Insert: WPR 16 AR - vc = 240 m/min n = 4775 1/min - fz=0.4 mm - vf=3820 mm/min - ap=1.5 mm - ae = 1.0 mm Developed with LMT Kieninger, Lahr, Germany

### **Fine Blanking**



### Comparative Analysis (SEM) after 30'000 Strokes



Source: Feintool, Lyss, Switzerland

### Injection Molding Wear Comparison

Molds for aluminum alloys for automotive industry after the fabrication of 15 000 parts



Plasma nitrided tool

Coated tool by ALLWIN, Cr-AI-Si based coating Thickness: 2 to 3 µm

# **Developed by/with PLATIT's Users**

### Wear Comparison at Hobbing with PM-HSS Tools



The patented Nanosphere coating is a result of a common development project, exclusively for LMT-Fette

### **Crater Wear Comparison at Hobbing with PM-HSS Tools**



### Technological Comparison at Hobbing with Solid Carbide Tools



### **Applications**

Milling

Form Milling

# tool Life in Hot Working Steel 600 500 400 300 200



### **Tool Life Comparison**

TiAIN<sup>2</sup>

100





Carbide End Mills Ø10mm, z=4, steel 34CrNiMo6 (30 HRC), Coolant: MQL; Minimum lubrication - Tested tools: 2x4 Source: Carmex, Maalot, IL

### Hard Turning using Coated CBN-Inserts with Special Adhesion Structure for nACo<sup>3®</sup>



### **PLATIT 's DLC-Coatings**

Diamond-Like Carbon (DLC) is a metastable form of amorphous carbon containing a significant fraction of sp<sup>3</sup> bonds. It can have high mechanical hardness, chemical inertness, optical transparency, smooth surface and low friction behavior.

Since their initial discovery in the early 1950s, DLC films have emerged as one of the most valuable engineering materials for various industrial applications, including microelectronics, optics, manufacturing, transportation, and biomedical fields. In fact, during the last two decades or so, DLC films have found uses in everyday devices ranging from razor blades to magnetic storage media.



Instead of using the term DLC, the term amorphous carbon is favored, to avoid the mix-up with diamond coatings, which are by definition crystalline. These amorphous carbon coatings are classified into seven categories: a-C hydrogen-free amorphous carbon ta-C tetrahedral-bonded hydrogen-free amorphous carbon a-C:Me metal-doped hydrogen-free amorphous carbon (Me = W, Ti) hydrogen-containing amorphous carbon a-C:H ta-C:H tetrahedral-bonded hydrogen-containing amorphous carbon a-C:H:Me metal-doped hydrogen-containing amorphous carbon (Me=W, Ti) a-C:H:X modified hydrogen-containing amorphous carbon (X=Si,O,N,F,B)

|                       |                    |           |            |                 |            | $CBC = DLC^{1}$ | <b>DLC</b> <sup>2</sup> |
|-----------------------|--------------------|-----------|------------|-----------------|------------|-----------------|-------------------------|
|                       | a-C(:X)            | ta-C      | a-C:Me     | a-C:H (polymer) | ta-C:H     | a-C:H:Me        | a-C:H:X                 |
| Process               | PVD                | PLD/ FCVA | PVD / MS   | RS / PECVD      | HPD- PECVD | PVD/PEPVD/CVD   | PECVD                   |
| Interlayer            | None or Ti         | Ti / Cr   | Ti / Cr    | Si/Ti           | -          | Ti or Cr        | Ti or Cr                |
| Doping                | None or Ti, AI, Si | None      | Si/Ti/Cr/W | None            | -          | Ti or Cr        | Si                      |
| H content [%]         | 0                  | 0         | 0          | 40-60           | 25-30      | ~15             | ~20                     |
| Thickness (µm)        | 0.2-1              | 1         | 3          | 1/2             | /          | <5              | <5                      |
| Young's Modulus (GPa) | 200                | >500      | 350        | 110/260         | 300        | 200             | 250                     |
| Hardness (GPa)        | 8 to 28            | >50       | 30         | 8/28            | 50         | <20             | <25                     |

PLD: Pulsed Laser Deposition – FCVA: Filtered Cathodic Vacuum Arc – MS: Magnetron Sputtering – RS: Reactive Sputtering – PECVD: Plasma Enhanced Chemical Vapor Deposition – HPD: High Plasma Density

### Simplified Overview of Thermal Stability Limits of Different Categories of Hard Carbon Materials





# **Applications with DLC-Coatings**



Punches with nACVIc<sup>2®</sup>



Tool holder chuck coated with nACVIc<sup>2®</sup>



Thread former for TETRA Pak<sup>®</sup>, made from copper, coated with cVIc<sup>2®</sup>



PET-Core with ALLVIc<sup>2®</sup>



Water pump shaft coated with CROMVIc<sup>2®</sup>



Fluteless thread former with CROMTIVIc<sup>2®</sup>



Camshaft with CROMVIc<sup>2®</sup>



Valves of a racing car coated with F<sup>\*</sup>-Vlc<sup>®</sup>



Uncoated and coated turbine blade with Fř-Vlc<sup>2®</sup>



Machine parts coated with CROMVIc<sup>2®</sup>



Injection mold coated with nACVIc<sup>®</sup>



Control lever for cylinder head of a racing car with  $\text{F}\check{\textbf{i}}\text{-}\text{VIc}^{\circledast}$ 



Medical Parts from titanium with cVIc®



Sewing machine part coated with CROMTIVIc<sup>2®</sup>

### **PLATIT 's DLC-Coatings**



### The goals of PLATIT's development of DLC-coatings

- The combination of the extremely good features of PLATIT's conventional and Nanocomposite coatings (especially of the outstanding adhesion) with the advantages of the DLC-coatings (like smoothest surface and low coefficient of friction).
- Deposition of double coatings, (PVD and DLC-coatings) in one chamber in one batch
- Profitable coating production with DLC even in small series, for:
  - high quality machine components medical devices aerospace components
  - · cutting tools for composite materials with affinity for sticking molds and dies and punches

### **Comparison of the most important features of PLATIT's DLC-coatings**

|                               | 1 <sup>st</sup> generation                                                     | 2 <sup>nd</sup> generation                                                                                         | 3 <sup>rd</sup> generation                                                                 |  |  |  |  |  |
|-------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--|--|--|--|--|
| Name                          | DLC <sup>1</sup> (CBC) - X-VIc <sup>®</sup>                                    | DLC <sup>2</sup> - X-VIc <sup>2®</sup>                                                                             | DLC <sup>3</sup> - X-VIc <sup>3®</sup>                                                     |  |  |  |  |  |
| Availability                  | Basis coating + DLC <sup>1</sup>                                               | Recommended as top coating<br>Basis coating + DLC <sup>2</sup>                                                     | Basis coating + DLC <sup>3</sup> for non-carbide<br>Also without basis coating for carbide |  |  |  |  |  |
| Most common coatings          | cVlc <sup>1®</sup>                                                             | VIc <sup>2®</sup> , cVIc <sup>2®</sup> , CROMVIc <sup>2®</sup> ,<br>CROMTIVIc <sup>2®</sup> , nACVIc <sup>2®</sup> | VIc <sup>3®</sup> , cVIc <sup>3®</sup> , CROMVIc <sup>3®</sup>                             |  |  |  |  |  |
| Coating process               | PVD                                                                            | PVD+PECVD                                                                                                          | PVD, filtered ARC                                                                          |  |  |  |  |  |
| Deposition temperature        | 200 - 500°C                                                                    | 200 - 500°C                                                                                                        | < 200°C                                                                                    |  |  |  |  |  |
| Composition                   | a-C:H:Me - Metal doped DLC                                                     | a-C:H:Si - Silicon doped metal free DLC                                                                            | ta-C - Hydrogen-free DLC                                                                   |  |  |  |  |  |
| Heat resistance               | < 400°C                                                                        | < 450°C                                                                                                            | < 450°C                                                                                    |  |  |  |  |  |
| Internal stress               | medium                                                                         | lower due to Si                                                                                                    | high                                                                                       |  |  |  |  |  |
| Typical thickness             | up to 3 $\mu$ m                                                                | up to 3 $\mu$ m                                                                                                    | up to 1 $\mu$ m                                                                            |  |  |  |  |  |
| Electrical conductivity       | good                                                                           | none                                                                                                               | none                                                                                       |  |  |  |  |  |
| Hardness                      | < 20 GPa                                                                       | < 25 GPa                                                                                                           | > 50 GPa                                                                                   |  |  |  |  |  |
| Roughness                     | Ra~0.1µm - Rz~coating thickness                                                | Ra~0.03µm - Rz~coating thickness                                                                                   | Ra~0.02 $\mu$ m - Rz~coating thickness                                                     |  |  |  |  |  |
| Friction coefficient to steel | μ~0.15                                                                         | μ~0.1                                                                                                              | μ~0.1                                                                                      |  |  |  |  |  |
| Wear resistance               | Wear through after a short time                                                | Wear through after a long time                                                                                     | Wear through after an extra long time                                                      |  |  |  |  |  |
| Main application goal         | Improvement of tool's run-in behavior<br>Lubrication by forming transfer films | Reducing friction for machine components, molds and dies                                                           | Cutting light metals, composites and graphite                                              |  |  |  |  |  |





Measured at Physics Department, Fribourg University, Switzerland

Adhesion measured by scratch-test: CROMVIc<sup>2®</sup> on carbide;  $L_{c2} = 74.3$  N

|  |      |       | の | 1 1 1 1 |      | and a      |        |      |                                         |  |  | 154 |       | the second | A CO    | 10-1 |  | - |  | - |   | - | - |  |       |   |              |  |
|--|------|-------|---|---------|------|------------|--------|------|-----------------------------------------|--|--|-----|-------|------------|---------|------|--|---|--|---|---|---|---|--|-------|---|--------------|--|
|  | 1000 | 「日本」の |   |         | Sand | the sector | 61.1 C | 1000 | ALL |  |  |     | 100 M |            | A State |      |  |   |  |   | - |   |   |  | 1 des | 2 | <u>00 µm</u> |  |

Surface roughness measured by AFM: CROMVIc<sup>2®</sup> on carbide: S<sub>a</sub>=0.0374  $\mu$ m



### Nanoindentation for Measuring Hardness of DLC<sup>2</sup> Coatings

80 **Berkovich Indenter** Method: Oliver & Pharr Approach speed: 2000 nm/min 60 Acquisition rate: 10 Hz normal force (Fn) Linear loading Max. load: 70 mN 40 Loading rate: 70 mN/min Main results: 20 HIT=25444 Mpa EIT=331.99 Gpa Hv=2356.4 Vickers 0 mN 80 160 320 400 240 0 nm penetration depth (Pd)

### Friction Behavior of DLC<sup>2</sup> Coatings

### Milling

#### Comparison of the built up edges at aluminum cutting



Segmented TiB<sub>2</sub>-cathode for SCIL<sup>®</sup>-Technology



**X** EDX- detection frequency of the respective element: DLC<sup>3®</sup> deposited by  $\pi$ 211 SEM and EDX after 283 m tool life Material: 3.4365 AlZnMgCu1,5 - Tool: Torus end mill Ø12mm – r=2.5mm – z=2 vc=377 m/min – ae=5mm – ap=6mm – fz=0.2 mm/rev

### Measuring of the Coefficient of Friction by Pin on Disc Test at 400°C: nACVIc<sup>2®</sup> : $\mu$ =0.12 ±0.02





Pin on disc wear test with Ti pin grade 5 - r = 10 [mm] - Normal load : 2 [N] - Lin. Speed : 6.67 [cm/s] - Acquisition rate : 2 [Hz] - Rel. humidity: 0%

### Coefficient of Friction Measurement by Pin-on-Disc Wear Test at 400°C



- (Ti, Al)-based layers are not suitable because of their high coefficient of friction
- Clear influence of the carbon gradient in the TiCN coating (high scatter)
- Excellent friction coefficients with DLC films and very low scatter
- Si-doped DLC survives more than 8-hour tests at 400°C !

### **DLC<sup>2</sup>** Coating in High Performance Racing Engines

### **Demanding Engine Applications for Racing Cars**

#### 1 -> Mechanical lifter (M2 steel, 63-64 HRC)

Contact partner: tool steel camshaft with case hardened lobes

- No material transfer to the foot
- Low friction and high wear resistance

#### 2 -> Intake valve (Ti alloy)

Contact partner: AMCO45, Ni-Al Bronze alloy

- No material transfer to the seat
- Low friction on the stem

#### 3 → Wrist pin (PM-HSS)

Contact partner: tool steel

- No material transfer
- Very low friction and low wear



V8 engine, up to 9'000 RPMs, 750 HP

### **Coating Evaluation After Bench Test**



SEM micrograph of a lifter foot after a run with over 1000 miles

**Result: Outstanding DLC<sup>2</sup> coating for reliability and performance** 



### DLC<sup>2</sup> Thickness Distribution on Valve Shanks for Racing Cars, Deposited in $\pi$ 80+DLC Unit

One of the most important applications is the DLC-coating of valves for the racing and normal road cars, trucks and bikes.





### Using DLC Coatings in Small and Medium Size Industries

#### **Micro Drilling in Titanium Tool Life Comparison** 9000 9 pieces 7800 8 8000 7000 7 6000 6 max holes Number of holes 5000 tested tools 5 [pieces] 4000 4 out of tolerance 3000 3 [pieces] 2000 2 1350 1000 1 100 0 0 ZrN MOVIC DLC<sup>2</sup> spec

Source: Diamond SA, Losone, Switzerland

### Minimizing of Wear and Friction at Extrusion



### Minimizing of Wear and Friction at Deep Drawing



Tool for deep drawing of aluminum parts

Result:Post-treatment absolutely necessary

Source: Mala Verschlusssysteme, Schweina GFE, Schmalkalden, Germany

### **Cutting Sticky Materials with DLC<sup>2</sup> and DLC<sup>3</sup>**

### PCB Micro Drilling

### **Tool Life Comparison**



 Image: Contract of the second secon

Coating: DLC<sup>3</sup>=Cr-based ta-C - Workpiece material: printed circuit board - n=140'000 RPM Source: Topoint, Taipei, Taiwan

### **Tapping in Titanium**



### Comparison of Cutting Torque with TiCN<sup>2</sup> and CROMTIVIc<sup>2</sup>



### Built-Up Edges at Dry Milling of Soft Aluminum Alloys With Different Coatings

The main target of the DLC<sup>3</sup> coating is to offer an economical alternative for expensive PCD-tools and CVD-diamond coatings. CVD-Diamond TiB, DLC<sup>3</sup> (ta-C)



Work piece material: AIMg4.5Mn - Tool: Solid carbide end mill d=8mm - v<sub>c</sub>=250 m/min - f,=0,16 mm - a<sub>n</sub>=5 mm - dry - Source: GFE Schmalkalden, Germany

### Why Integrate Coating in Small & Medium Sized Enterprises?

What is Important for the Users of Coatings?

Dr

### **The Most Important Reasons for In-House Coating**

### Independence Full Production in one's own hand

With the own coating unit the tool maker is independent and can influence and warranty the performance of his product in full. "Thanks to my flexible, complete tool production with integrated coating, I can

more than a match for big companies!" M. Mauth, Oberndorf, Germany

### **Delivery Time**

The short delivery time is extremly important, the A and O nowadays. With the own coating unit, tool maker can produce special tools in one day, included grinding and coating.

### **Minimal Packaging and Transport**

8 - 15 % of the tools will be damaged by the double transport to and from the job coaters.

### Quality

The best job coater can not deposit the optimum coating for every tool. Among other things basically not because he can not prduce the optimum coating thickness for the different mixed tools in his usually big chamber, see page 93.

### Price / Business

The return of investment is around 1.5 - 2.5 years, see page 131.

### Innovative, Dedicated own Coatings, Brands, Colors

The tool maker can adapt the coating to his tool geometry, see pages 118-125.

### Wide, Flexible Coating Spectrum

SME should be able to coat very different coatings every day, see page 78-93.

### **Economics - When should an SME change to integration?**

### **Cash Flow Difference at Leasing of Small and Medium Size Coating Machines**

- Investment calculated with coating unit, recipes, cathodes, basic holders, PVD accessories, cleaning system, quality control system
- Shifts per day: 1
- Leasing rate / month calculated with 4%
- Variable costs: energy, target, gas, water, detergents
- Fix costs: loan (credit), labour, social. rental costs and depreciation
- The costs which arise in case of job coating within a tooling company from transportation, repeated packaging, handling, rejected deliveries and damages are NOT considered.



#### Total Costs / Batch [CHF]



see page 40

### Total Costs / Tool [CHF]







### Target Costs / Batch [CHF]



see page 40

### Target Costs / Tool [CHF]



### World Wide Service Service Concept (\*)

### **Remote Diagnostics and Online Control**

- Fast and secure online connection between PLATIT and customers worldwide
- Firewall protection should be installed by user's IT
- Remote and on-site diagnostics of all components and processes with graphical trace files
- Most recommended software for remote control and diagnostics: Teamviewer
- Remote diagnostics only possible with user's assistance



Standardized scopes of supply and services. PLATIT® recommends frequent services every 6 months.



• Support via phone and internet included





#### **Official PLATIT Service Label**

Each serviced unit is identified by a service label, which includes a link that leads the user to the PLATIT service database.

This database describes all carried out services and indicates upcoming recommended maintenance work.

### **PLATIT Augmented Reality Support** The New Service

PARS<sup>®</sup>-Service Process:

service *π*-units

- The PLATIT machine user signs a service agreement with PARS<sup>®</sup>-option.
- The coating unit needs to have a fast internet connection (> 5 Mbit/s).

ervice Packages

**Team**Viewe

- In a service incident the operator connects the unit and PARS<sup>®</sup>-glasses to the internet.
- The operator puts on the PARS<sup>®</sup>-glasses and looks at the problem with the service-technician online.
- The service-technician marks the critical area on his computer screen, which also appears in the operator's glasses. He guides the operator with audible and visual suggestions on how to solve the problem.

Advantages of the PARS<sup>®</sup>-Service

π1511

 $PL^{21}$ 

- Worldwide presence without travel
- Shortest reaction time from 7:00 AM to 3:30 PM (CET)
  - Saving of travel expenses
    - Saving of labour costs
  - Increase of service availability
  - Reduction of production downtime

**Turnkey Coating System** 

### The Virtual Service-Technician in Action

Example case

### 10:00 AM Alarm at the customer site

### 10:05 AM

The operator contacts the PLATIT hotline, establishes internet connection, and a support session:

- Using the PARS<sup>®</sup>-glasses for his view and
- TeamViewer for the coating unit.

### 10:10 AM

The service-technician on duty reviews the problem and trendfiles of the interupted process through TeamViewer.

### 10.15 Uhr

The operator and service-technician look at the machine through the operators PARS<sup>®</sup>-glasses.

The service-technician recognizes, that a cathode's striker is stuck. He marks the problem on his screen, which also appears in the PARS<sup>®</sup>-glasses.

### 10.25 AM

The operator resolves the problem, the production can continue. The virtual technician has avoided:

- travel,
- production downtime, and therefore
- thousands of € in cost.











### **Cathode Exchange Centers**

#### **Customer with PLATIT equipment** $\pi^{s_0}, \pi^{111}, \pi^{111}, \pi^{211}, \pi^{211}, \pi^{300}, \pi^{311}eco, \pi^{311}, \pi^{411}eco, \pi^{411}, \pi^{411}, \pi^{411}$



1. Customer requests for a refurbished cathode to CEC by email or fax





2. CEC dispatches cathode within 24 hours from stock

3. Customer ships used cathode back to CEC within 8 days

#### **PLATIT's Cathode Exchange Centers (CEC):**

- Sumperk, Czech **Republic (EU)**
- Libertyville, IL, USA
- Seoul, South Korea
- Curitiba, Brazil
- Shanghai, China
- Moscow, Russia







Stock of cathodes: LARC<sup>®</sup>: • Cr

- Ti
- Al • AlSi<sub>06</sub>
- AlSi<sub>12</sub>

• AlSi<sub>18</sub>

CERC<sup>®</sup>: • AITi<sub>33</sub> • AlCr<sub>30</sub> • Zr • TiAl<sub>50</sub>

• AlTi<sub>33</sub>

 $\pi$ 

• AlCr

• AlCr<sub>30</sub>

**CEC-System** 

Lifetime Warranty for Cathodes

- TiSi<sub>20</sub>
- CrTi<sub>15</sub>

CERC<sup>®</sup> Cathode

LARC<sup>®</sup> Cathodes

e.g. Ti-long long plus e.g. Ti-plus

SCIL<sup>®</sup>-Cathodes:

π<sup>111</sup>PLUS / π<sup>411</sup>PLUS :

 $\pi^{222} / \pi^{422}$ :

• TiAl<sub>50</sub>-SCIL<sup>®</sup> • AICr<sub>30</sub>-SCIL<sup>®</sup> • Ti-SCIL<sup>®</sup>

 $\pi$ 80 /  $\pi$ <sup>300</sup> /  $\pi$ <sup>311</sup> : short e.g. Ti-short

• B<sub>v</sub>-SCIL<sup>®</sup> • TiB<sub>2</sub>-SCIL<sup>®</sup> W-SCIL<sup>®</sup>

Type of cathodes depending on the machines types:



### **Technical Process of Target Exchange in CEC**



5. Writing of the cathode's identification chip

4. Long time test of the mechanical functions

### Advantages for the Users by PLATIT's Cathode Exchange Principle and Centers

- PLATIT's warranty for exchange quality
- No stocking costs for the users
- Cathodes are renewed by CEC at every change to state of the art
  - All wear parts are new after every change by CEC
  - Cathodes are long-time vacuum tested at CEC after every change
  - Optimum setting and burn in by CEC
  - User just quickly changes the cathodes
    no setting, no weighing, no burn in by user
- Minimum transport costs and duties around the world
- Always high quality target material
- Environment friendly recycling of used target material by CEC
- Low target costs (see figure)
- The CEC system has been working at high satisfaction of users for many years





Calculated for the coatings AlTiN, AlCrN, AlTiCrN, nACo, nACRo Machine:  $\pi$ 411 - Tools: ø10mm end mills LARC cathodes: Ti, Al, Cr, AlSi<sub>18</sub> - ø96x 510 mm - CERC cathodes: AlTi<sub>33</sub>, AlCr<sub>30</sub> - ø110x510 mm

Machine with spot targets: 6 cathodes with Ti, Cr, AlCr, TiAl, AlTi targets - ø150 mm

137

B

### **World Wide Service** Training Programs



### **Training Certificate**



### **Installation Training**

The installation trainings are carried out by our service team on location of our users.



#### **Training on Demand**

Our project engineers give dedicated trainings on a wide range of subjects from the basics to special fields.

### **Advanced Training**

The advanced trainings take place on location of the user, or in our headquarters by our project engineers or our R&D people, typically for the installation of dedicated coatings.





### **Sales Partners and Agencies**



#### GERMANY PLATIT Representative AR Industrievertretungen

Lautlinger Weg 5 D-70567 Stuttgart Phone: +49 (711) 718 7634-0 E-Mail: germany@platit.com

#### ITALY

PLATIT Representative Via Serra Groppelli 23 23899 Robbiate (Lecco)

Phone: +39 349 78 16 747 E-Mail: italy@platit.com

#### MEXICO

Sales Agent Presotec S.A Av. Del Parque 216 Regio Parque Industrial MX-66600 Cd. Apodaca Monterrey metropolitan Area N.L Phone: +52 (81) 8375 E-mail: mexico@platit.com

#### POLAND

Platit Representative Technolutions UI.Jana Pawla II 52/56 PL-99-400 Lowicz Phone: +48 606440718

poland@platit.com

#### **RUSSIA**

E-Mail:

Sales Agent and Cathode Exchange Center ETC Technopolice LLC Dmitriya Ulyanova str. 42, Building 1, Office 401 RU-117218, Moscow Phone: +7 (499) 517 9191 E-Mail: russia@platit.com

#### SINGAPORE

PLATIT Service51 Ubi Ave 1, #05-08Paya Ubi Industrial ParkSingapore 408933Phone:+65 9672 9528E-Mail:singapore@platit.com

#### TURKEY

Sales agent ERDE Dis Ticaret Ltd. Sti. Egitim Mah.Kasap Ismail Sk. Nr.:6 D:4 TR- 34722 Hasanpasa – Kadikoy / Istanbul Phone: +90 216 3302400 E-Mail: turkey@platit.com

#### INDIA

Sales Agent Labindia Instruments Pvt. Ltd. 201, Nand Chambers LBS Marg, Near Vandana Cinema Thane West 400602 Phone: +91-22-25986061

E-Mail: india@platit.com

#### JAPAN

PLATIT Representative YKT CORPORATION 7F, Nishi-Shinjuku Matsuya Bldg. 4-31-6 Yoyogi Shibuya-Ku 151-8567 Tokyo, Japan Phone: +81 3 3467 1270 E-Mail: japan@platit.com

#### PAKISTAN

Sales agent S&G International 301-A, Sea Breeze Plaza, Shahra-e-Faisal, Karachi-75530 Phone: +92-213-2788 994 E-Mail: pakistan@platit.com

#### RUSSIA

Sales Agent Arcontec Ltd. Hauptstrasse 60 CH-2575 Taeuffelen Phone: +41 32 396 26 39 E-mail: russia@platit.com

#### RUSSIA

Sales Agent TL Technology AG Moosweg 1 CH-2555 Brügg Phone: +41 32 505 27 80 E-mail: russia@platit.com

THAILAND

Sales agent Best Lube Co., Ltd. 69 Ratchadapisek 36 Rd. Chankasem, Jatujak, Bangkok, 10900 Phone: +66 2 939 1017 E-Mail: thailand@platit.com

#### UNITED KINGDOM

 PLATIT Representative

 Advanced Grinding Solutions Ltd.

 Units 1 & 7 Steeple House, Percy Street

 Coventry CV1 3BY

 Phone:
 +44 2476 22 66 11

 E-Mail:
 uk@platit.com



# •

#### **PLATIT AG Headquarters** Advanced Coating Systems

Eichholz St. 9 CH-2545 Selzach / SO Switzerland

Phone: +41 (32) 544 62 00 E-Mail: info@platit.com

#### CZECH REPUBLIC

PLATIT a.s. Advanced Coating Systems Prumyslova 3020/3 CZ-78701 Sumperk Phone: +420 (583) 241 588 E-Mail: platit@platit.eu

#### USA PLATIT Inc.

Advanced Coating Systems 1840 Industrial Drive, Suite 220 Libertyville, IL 60048 Phone: +1 (847) 680-5270 E-Mail: usa@platit.com

SHANGHAI, CHINA PLATIT Advanced Coating Systems No. 161 Rijing Road, Polit FTZ, Pudong, Shanghai, 200131 China

Phone: +86 (135) 121 620 88 E-Mail: shanghai@platit.com

© 2019 PLATIT AG. All rights reserved. Specifications subject to change. All ® signed trademarks are registered by the PLATIT Group. Several technologies described herein are protected by international patents. EV61

A Idea-Lab

Design:

Editor: Dr. Tibor Cselle



World Wide Service Available through website www.platit.com



SWITZERLAND PLATIT AG CCS Division Production Vaulruz Route de Champ-Paccot 21 CH-1627 Vaulruz Phone: +41 (32) 544 62 90 E-Mail: ccs@platit.com

SCANDINAVIA PLATIT Scandinavia ApS Universitetsparken 7 / PO Box 30 DK-4000 Roskilde

Phone: E-Mail:

+45 (46) 74 02 38 scandinavia@platit.com

### SOUTH KOREA

PLATIT Support Center2F Geumyoung B/D 36, 501 Beon-GilYoungtong-Ro Suwon CityGyeongi-do South Korea 443-809Phone:+82 (31) 447 4395-6E-Mail:korea@platit.com