THNTT®

Compendium

$61^{\text {st }}$ Edifion

Content

PLATIT and its 10 Commandments
Milestones of PLATIT's history

$\begin{array}{ll}\text { Coating Systems in } 39 \text { Countries of the World } & 12\end{array}$

Basics

Coating Advantages - Basic Applications Fields - Flexible Coating - Integrated Coating 14
Coating Equipment
18
MoDeC ${ }^{\oplus}$ Modular Deficated Coating 18
שixeres - The π Advantages - Virtual Shutter - Tube Shutter 20
LGD ${ }^{\circledR}$: LAteral Glow Discharge 22
бixsur 24
PL200 3028
π^{2500}
Carousels and Substrate Holders 36
Loading Capacities 40
Customized Units 42
Turnkey Coating Systems
Turnkey Solutions 48
Stripping - Decoating 51
Cleaning Units 54
CleX ${ }^{\circledR}$: Modular Holder System for Cleaning and Stripping 56
Microstructuring - Edge Preparation 58
Brushing - Micro Blasting - Drag Grinding - Stream Grinding - Magnet Finishing 62
Cutting Edge Shape and Measurement 67
Quality Control - POCS 69
Equipment for Special Handling and Treatment 72
Coating System Layout - Connection Data 74
Coatings
Generations, Structures, Main Coatings76
Coating Properties - Main Application Fields 80
Coating Guide - Coating Spectrum 82
Coating Types 84
Basic Data and Coating Features 90
Applications of Coatings
Conventional Coatings 94
Nanocomposites
TholeCoating ${ }^{39}{ }^{39}$ 96
QUADCOatings 100 100 106
Oxide and Oxynitride
SCIL ${ }^{\circ}$ - Sputtered Coating Induced by LGD ${ }^{\oplus}$ - High Performance Sputtering 112
LACS ${ }^{\text {- }}$ - Lateral ARC and Central Sputtering - Hybrid Coating 114
Dedicated Coatings 118
DLC - Diamond Like Coatings 122
Why Integrate Coating in Small \& Medium Sized Enterprises? 130
Worldwide Service
Service Concept \& Packages 132
PLATIT Augmented Reality Support 134
Cathode Exchange Centers 136
Training Programs 138
PLATIT Worldwide 139

PLATIT and Its 10 Commandments

60 years of experience in coating business give us the competence to develop, produce and install genuine Turnkey Coating Systems.

The PLATIT Support Center of PLATIT in Selzach / SO, Switzerland Operational Headquarters \& Project Engineering \& R\&D \& Test Center \& Logistics \& Marketing

PLATIT AG

Eichholzstrasse 9
CH-2545 Selzach / SO
Switzerland
Phone: +41 (32) 5446200
Fax: $\quad+41$ (32) 5446220
E-Mail: info@platit.com
Web: www.platit.com

PLATIT a.s. Building in Sumperk, Czech Republic
Standard machines of the Series 22

The 10 Commandments for PLATIT

Core competence: Development and production of high-tech PVD coating equipment \& coatings

1. Independence from large enterprises
Main marketing targets:
SME companies
2. Headquarters in Switzerland Tradition, image, infrastructure, financing and tax system
3. Worldwide distributed intelligence
Global cooperation with institutes, suppliers, coaters and users
4. Balanced distribution of sales More than 500 installations in 38 countries
5. Flat, lean company structure

No hierarchies, focus on development, not on logistics
6. Team spirit

Innovation and performance count, not origins and ties
7. Blue Ocean Strategy

Products and markets ahead of and without competition

- min. 1 new coating every year
- new coating unit every $2 n d$ year

8. Win-Win with customers

Not discount but price/performance decides competitiveness
9. No job coating

Avoiding competition between
customers and PLATIT
10. Turnkey Systems

For integration into the production

Milestones of PLATIT's History

PLATIT was founded by W. Blösch AG in 1992.
The Blösch AG is member of the BCl Blösch Corporation Group, started in 1947 as a supplier to the Swiss watch industry. It is now a powerhouse for high-tech funcional and decorative coatings.

Walter Blösch
Founder of W. Blösch AG

Acquisition of Vilab AG in 1997. Vilab PCT (Profitcenter Technology) develops special coatings for the optical and watch industry.

1995 - BCI: Innovative coatings for the watch industry:

Hard antireflective coating on sapphire watch glass
Color coating on watch dial -
 \qquad Start of the PLATIT project.

New construction for the production of hard coatings.

MFISS.

 Liss AG is founded for the production ofand jewelry. First plant for the electropla
precious metals is built.

Research in nanostructured coatings leads to the introduction of the revolutionary π^{80} coating unit with LARC ${ }^{\oplus}$ technology.

$n A C 0^{\circ}-$ nACRo $^{\circ}$

First nanocomposite coatings in industrial production.

PVOT -
PLATIT establishes PIVOT in a joint venture with SHM in the Czech Republic.

Development of turnkey systems for flexible coating, based on the $\boldsymbol{i P L 5 0}$ coating unit.

PLATIT AG was founded. Assembly of first PLATIT hard coating equipment.

PL1001 COMPACT

Introduction of the plug \& play workhorse for conventional coatings.

Developments

Forming of PLATIT a.s. Sumperk, CZ

Due to the possible upgrades for standard machines, users can participate in the benefits of the new technologies. E.g. LARC-GD-, OXI-, and DLCㄹ-upgrades.

Developments

Developments

TLNTTG:

Milestones of PLATIT's Coatings

PLATIT Coating Systems in 39 Countries of the World

Europe

- Austria
- Belarus
- Bulgaria
- Czech Republic
- Denmark
- Estonia
- France
- Finland
- Germany
- Hungary
- Italy
- Netherlands
- Norway
- Poland
- Romania
- Russia
- Slovakia

Asia

- China
- Thailand
- Turkey
- United Arab Emirates
- Hong Kong
- India
- Israel
- Japan
- Pakistan
- Philippines
- Singapore
- South Korea
- Taiwan

Americas

- Brazil
- Canada
- Mexico
- USA

Coating Advantages

PLATIT develops and produces coating equipment for plasma-generating PVD (Physical Vapor Deposition). Our products are based on:

- Conventional cathodic ARC technology PL²011, $\pi^{\mathbf{1 5 0 1}}$
- The unique LARC ${ }^{\circledR}$ technology (LAteral Rotating Cathodes) π^{107}, π^{1501}
- The unique LARC ${ }^{\circledR}$ and CERC ${ }^{\circledR}$ (CEntral Rotating Cathodes) technologies $\pi^{\boxed{817}}$
- High performance sputtering technologies
- $\pi^{\boxed{617}}$ SCIL: Sputtering induced by LGD ${ }^{\circledR}$ (LAteral Glow Discharge)
- $\boldsymbol{P L}^{\text {¹1 }}$ HIPIMS: High Performance Impuls Magnetron Sputtering
- LACS ${ }^{\circledR}$: Hybrid technology $\pi^{\boxed{811}}$ (LAteral Arcing with Central Sputtering)

We hold a significant number of patents related to coatings, coating technologies, and processes.
PLATIT coatings offer the highest standard of modern coating technology for tool steels (cold / hot work steel, high speed steel; HSS, HSCO, M42, ...) and tungsten carbides (WC). All work pieces can be coated with a programmable coating thickness between 1 and $18 \mu \mathrm{~m}$. All batches are coated with high uniformity, ensuring the repeatability of the coating quality.

Cutting

The PLATIT hard coatings reduce the abrasive, adhesive and crater wear on the tools for conventional wet, dry and high speed machining.
All carbide tipped tooling must be manufactured with brazing material that contains no cadmium and no zinc. Cadmium and zinc are not stable under the high vacuum at the coating process temperatures. Braze outgassing will ruin the strength of the joint, contaminate the tooling surface and the vacuum chamber.

Punching, Fine Blanking

PLATIT technology ensures an increase in tool life through special structures and by reducing friction on punches and on fine blanking tools.

Forming

For forming applications such as extrusion, molding, deep-drawing, coining, PLATIT hard coatings reduce friction, wear, built-up edges and striation. Repolishing of functional surfaces is recommended.
The PLATIT hard coatings increase productivity for plastic forming and forming machine components with better release and lower wear. Low roughness and excellent surface texture improve part release and influence injection forces in the mold to allow shorter cycle times. For parts with a mirror finish, repolishing after coating is recommended. Due to physical limitations, deep holes and slots are seldom coatable.

Tribology

PLATIT hard coatings solve tribological problems with machine components that can be coated at temperatures of $200-600^{\circ} \mathrm{C}$. Due to the hardness (up to 45 GPa), abrasive wear is reduced. This leads to higher reliability for dry operations, and environmentally damaging lubricants can be replaced.

Basic Application Fields

Cutting

Forming

Injection Molding

Punching / Fine Blanking

Tribology

Flexible Coating

Application Oriented

Different objects (e.g. tools) are not coated with one universal coating, but in separate batches with the optimal coating for their individual applications.

User Oriented

Large and small part quantities can be coated according to the customer's specifications.
Users can create new coating brands to coat special parts for highest performance and their own marketing.

Highly Reproducible

All customer-dedicated batches can be repeated with the same exact parameters and under the same conditions.

Fast

The collection of similar pieces to be coated in one batch can be minimized. No waiting times.

Economical

The system's payback is ensured even at just a few batches per day, since coating times are much shorter than with conventional units.

Large Volume Coating

Standard Coating for All Pieces

In industrial mass coating, different types of substrates are often coated together. While high volumes may raise profitability, coating performance often suffers. Also, process times are typically much longer than with smaller quantities.

The $P L^{777}$, $P L^{7077}$, and π^{7577} units make traditional high-volume coating flexible. They offer high-quality coatings and short cycle times. Different substrate types and sizes can be mixed without sacrificing coating quality.

Dedicated Coating

The π^{707}, π^{477} units make specially tailored coatings possible and economical, even for small and medium-sized batches.

Dedicated TiN
for milling cutters

Dedicated TiAIN
for end mills

Dedicated TiCN
for punches and dies

Small batch with dedicated coating

Large volume job coating load with different mixed substrates

Integrated Coating

PLATIT's coating units are suitable for integration into the manufacturing process. This creates the opportunity to

- generate new coatings (such as nanocomposites) and coating brands
- reduce logistics, transport, and storage costs
- operate with own pretreatments, tool geometries and keep them confidential
- manage the quality and timeline for entire production internally
- create earnings through coating

Insourcing the coating process does not require more staff than that for logistics, packaging, shipping and cooperating with the job coater. The break-even of PLATIT coating systems is typically achieved in less than 2 years.

With the high flexibility of the PLATIT units, coatings can be applied

- for the cutting and forming tools used in production and
- for own products, including machine parts

The example below is taken from Madern B.V., Vlaardingen, NL
(Madern built up the system with the predecessor of the π^{1021}, with $\pi^{s 0}$)

End Product
cardboard boxes

Hard milling of segments with coated carbide tools

MoDeC ${ }^{\circledR}$ Innovations

PLATIT's coating concept - Modular Dedicated Coating - allows the configuration of the number of cathodes, type, and position according to the coating task. MoDeC ${ }^{\circledR}$ is the driving force behind PLATIT innovations. New coatings and units are developed bearing this principle in mind.

π

Small coating unit with 2 LARC $^{\oplus}+$ cathodes LARC ${ }^{\circledR}$ technology: LAteral Rotating Cathodes

- The new generation of the first industrial coating unit for Nanocomposite coatings
- The heart of Turnkey Coating Systems for small and medium enterprises
- Selected ThipleCoatings ${ }^{3 \text { ® }}$
- Coatable volume: ø355 x H420 mm
- Loading with ø10mm end mills: 288 pcs
- 5 batches / day

PL 212

Compact machine for machine components and tools

- 2 planar (DUO) cathodes
(standard size of the PL1011)
- DC or HIPIMS sputtering with PA3D module
- TiN, CrN with sputtering
- + DLC ${ }^{2}\left(\right.$ SCILVII $\left.^{28}\right)$ in PECVD mode
- + DLC ${ }^{3}$ (ta-C)
- Coatable volume $\varnothing 500 \times \mathrm{H} 450 \mathrm{~mm}$
- Loading with ø10mm end mills: 432 pcs
- Extremly high coating surface quality

PL 2022

- High volume compact unit
- The "workhorse" for coating centers
- 4 planar cathodes with ARC technology
- Conventional and selected TripleCoatings ${ }^{\text {® }}$
- Coatable volume: $\varnothing 600 \times \mathrm{H} 680 \mathrm{~mm}$
- Loading with $\varnothing 10 \mathrm{~mm}$ end mills:

1080 pcs

- 3 batches / day

22 Series

PLATIT's entire product line consists of "compact" coating units. These units come in one piece, with the coating chamber in the same cabinet as the electronics. This eliminates the need of costly and time consuming on-site assembly.

in 2003

π^{2522}

Combination of $\operatorname{LARC}^{\circledR}$ and planar ARC technologies

- High volume compact unit
- 3 LARC ${ }^{\circledR}$ - XL rotating cathodes in the door
- 2 planar cathodes in the back as boosters
- All 5 cathodes can deposit simultaneously
- For conventional and

Nanocomposite coatings

- Most TripleCoatings ${ }^{3 ®}$ and OUALCoatings ${ }^{4 ®}$
- Coatable volume: ø600 x H680 mm
- Loading with $\varnothing 10 \mathrm{~mm}$ end mills: 1080 pcs
- 3 batches / day

PLATIT $\pi^{\text {v2TpLus }}$

The Startup Machine

General Information

- Compact hardcoating unit
- Based on PLATIT LARC ${ }^{\circledR}$ technology (LAteral Rotating Cathodes)
- Coating on tool steels (TS) above $230^{\circ} \mathrm{C}$, high speed steels (HSS) $350-500^{\circ} \mathrm{C}$ and on tungsten carbide (WC) between $350-550^{\circ} \mathrm{C}$

Hard Coatings

- Monolayers, Multilayers, Nanogradients, Nanolayers, Nanocomposites, and their combinations
- Main standard coatings: AITiN2 ${ }^{2}$-Multilayer, nACo ${ }^{2 ®}$, nACRo $^{2 ®}$, AICrN 3
- Selected TripleCoatings ${ }^{38}$ available

Hardware

- Footprint: W1890 x D1500 x H2120 mm
- Vacuum chamber with internal sizes of: W450 x D320(460) x H615 mm
- Loading volume: $\varnothing 353 \times \mathrm{H} 494 \mathrm{~mm}$
- Coatable volume: $ø 353 \times \mathrm{H} 420 \mathrm{~mm}$
- Max. load: 100 kg
- Turbo molecular pump
- Revolutionary rotating (tubular) cathode system with 2 LARC ${ }^{\oplus}+$ cathodes:
- LARC ${ }^{\circledR}$ target size: $696 \times 510 \mathrm{~mm}$
- Magnetic Coil Confinement (MACC) for ARC control
- Double wall, stainless steel, water cooled chamber and cathodes
- Changing time for skilled operator: approx. 15 min / cathode
- VIRTUAL SHUTTER ${ }^{\circledR}$ and TUBE SHUTTER ${ }^{\circledR}$
- LGD ${ }^{\circledR}$: LARC $^{\circledR}$ Glow Discharge
- Ionic plasma cleaning:
- etching with gas $\left(\mathrm{Ar} / \mathrm{H}_{2}\right)$; glow discharge,
- metal ion etching (Ti, Cr)
- Pulsed BIAS supply 30 kHz (optional 350 kHz)
- Air conditioning for the electric cabinet
- Up to 6 gas channels, 5 MFC controlled
- Special dust filters for heaters (10 kW)
- Electrical connection:
$3 \times 400 \mathrm{~V}, 100 \mathrm{~A}$ external fuse $50-60 \mathrm{~Hz}, 30 \mathrm{kVA}$
- Carousel drive with high loadability (>150kg)
- Chamber preheating
- Changeable door shields
- Pulsed ARC supplies with low frequency
- LARC+ cathodes

Electronics and Software

- Control system with touch-screen menu driven concept
- No programming knowledge is required for control
- Data logging and real-time viewing of process parameters
- Remote diagnostics and control
- Insite operator's manual and on CD-ROM
- Enhanced operating software compatible to $\pi^{6,017}$

Optimal Cycle Times*

- Shank tools $(2 \mu \mathrm{~m})$: $ø 10 \times 70 \mathrm{~mm}, 288 \mathrm{pcs}: 4 \mathrm{~h}$
- Inserts $(3 \mu \mathrm{~m})$: $\quad \emptyset 20 \times 6 \mathrm{~mm}, 1680$ pcs: 4.5 h
- Hobs $(4 \mu \mathrm{~m}): \quad \varnothing 80 \times 180 \mathrm{~mm}, \quad 20 \mathrm{pcs}: 6 \mathrm{~h}$
*: The cycle times can be achieved under the following conditions:
- solid carbide tools (no outgassing necessary)
- high quality cleaning before the coating process (short etching)
- continuous operation (pre-heated chamber)
- 2-cathode processes
- use of fast cooling (e.g. with helium, opening the chamber at $200^{\circ} \mathrm{C}$)
- 5 processes / day

π Advantages with LARC \& LARC + Technology

1

LARC Technology

- Low target costs due to the cylindrical rotating cathodes
- Large effective target surface: $\mathrm{d}^{*} \pi^{*} h$
- Highly ionized plasma
- Target life: ~200 batches
- Low target costs/tool: ~0.07 CHF/tool

Optimum adhesion

- With LGD ${ }^{\circledR}$, VIRTUAL SHUTTER ${ }^{\circledR}$, and TUBE SHUTTER ${ }^{\circledR}$ due to:
- Burning with the magnetic field
- to the back for fast target cleaning
- to the substrates for deposition
- Permanent presence of pure Ti or Cr target
- LARC+: Enhanced LGD plasma cleaning efficiency

Programmable stoichiometry

Due to minimum distance between 2 targets, deposition of:

- Multi- and Nanolayers, gradient coatings
- Without changing the unalloyed targets;

Ti, Cr, Al, Al(Si), Zr

- Nanocomposites:
- Segregation into 2 phases, e.g. (nc-TiAlN)/(a-SiN)

2. LARC+ Technology

Additional cost reduction

- New magnetic field system (LARC+)
- Low frequency pulsed ARC
- Increased target life by ~30\%
- Low target costs/tool: ~0.05 CHF/tool

3. LARC+ Very consistent target erosion

LARC + : Targets at end of life

LGD ${ }^{\circledR}$ and Double Shuttering

LARCGD ${ }^{\text {LARC }}{ }^{6}$ Glow Discharge

- LARCGD is a new patented method, that works with the LARC cathodes in combination with the VIRTUALSHUTTER and TUBE SHUTTER
- LARC GD generates a highly efficient argon etching for special substrates with difficult surfaces (e.g. hobs, mold and dies)
- The electron stream between cathodes 1 and 2 creates high ion density plasma, which "cleans" substrates, even with complicated surfaces
- Pulsing of LGD source ensures high LGD-process stability and suppresses micro-arcs (hard-arcs) generation

Double Shuttering

VIRTUAL SHUTTER®

Target cleaning before coating

- TUBE SHUTTER ${ }^{\circledR}$ is closed
- to protect the substrates from dust of the previous process
- ARC is burning towards the back - VIRTUAL SHUTTER ${ }^{\circledR}$ is on
- ARC works as getter pump and substantially improves vacuum
- Target is cleaned before deposition
- without contaminating the substrates

TUBE SHUTTER®

Deposition (coating)

- TUBE SHUTTER ${ }^{\circledR}$ is open
- ARC is burning towards the substrates
- VIRTUAL SHUTTER ${ }^{\circledR}$ is off
- Smooth deposition with clean target

Advantages of the double shutters

- Adhesion layer is always deposited with clean targets
- Shuttering of all cathode types possible
- Simple handling, setting and maintenance of the shields and ceramic insulators
- Higher ARC current -> higher deposition rate possible ($\sim+20-30 \%$)

The Main Coatings of the $\pi^{\text {p17pLLs }}$

CrTiN²: For Forming

Stoichiometry: TiN - Cr/TiN-ML
$\pi^{\text {p7PLUs }}: 1: \mathrm{Cr}-2: \mathrm{Ti}$

AITiN²: For Universal Use

Stoichiometry: TiN - Al/TiN-ML $\pi^{\text {p7PLLS }}: 1: \mathrm{Al} \quad-2: \mathrm{Ti}$

AICrN ${ }^{3 \ominus}$: For Dry Cutting Abrasive Materials

Stoichiometry: CrN - Al/CrN-NL - AICrN

$\mathrm{ALL}^{3 ®}$ - $\mathrm{AICrTiN}^{3 ®}$: Universal for Cutting and Forming
Stoichiometry: $\operatorname{Cr}($ Ti) N - Al/CrTiN-NL - AICrTiN $\pi^{\text {D77PLLS }}: 1: \mathrm{Al} \quad-2: \mathrm{CrTi}_{15}$

nACo ${ }^{-2 \text { e }: ~ F o r ~ U n i v e r s a l ~ U s e, ~ T u r n i n g, ~ D r i l l i n g ~}$
Stoichiometry: TiN - AITiN/SiN
$\pi^{\text {P7TPLUS }}: 1: \mathrm{AlSi}_{12}-2: \mathrm{Ti}$

nACRo ${ }^{20}$: For Superalloys, Milling, Hobbing
Stoichiometry: TiN - AlCrN/SiN
$\pi^{\text {P77PLLS }}: 1: \mathrm{AlSi}_{12}-2: \mathrm{Cr}$

TiXCo ${ }^{\text {3e }}:$ For Superhard Machining, Milling, Drilling

Stoichiometry: TiN - nACo - TiSiN
$\pi^{\text {P77PLUS }}: 1: \mathrm{Al} \quad-2:$ TiSi $_{20}$

PLAT/T $\pi^{\text {L2 PLUS }}$

The High Flexibility Machine

General Information

- Compact hard coating unit
- Based on PLATIT LARC ${ }^{\circledR}$, CERC $^{\circledR}$ and SCIL ${ }^{\circledR}$ technologies LAteral Rotating Cathodes, CEntral Rotating Cathodes and Sputtered Coatings induced by LARC-GD ${ }^{\circledR}$
- Coating on tool steels (TS) above $230^{\circ} \mathrm{C}$, high speed steels (HSS) $350-500^{\circ} \mathrm{C}$ and on tungsten carbide (WC) between $350-550^{\circ} \mathrm{C}$
- Reconfigurable by the user into different cathode setups:
A: 3 LARC ${ }^{\oplus}$ cathodes (π^{677} ece)
B: 3 LARC ${ }^{\circledR}$ cathodes and 1 CERC ${ }^{\oplus}$ cathode
C: 3 LARC ${ }^{\oplus}$ cathodes and 1 SCIL $^{\oplus}$ cathode

Coatings

- Monolayers, Multilayers, Nanogradients, Nanolayers, Nanocomposites, TripleCoatings ${ }^{3{ }^{\circledR}}$, QuadCoatings ${ }^{4{ }^{\circ}}$, SCIL ${ }^{\oplus}$ - Coatings and their combinations
- Main standard coatings: $\mathrm{AlCrN}^{3 \ominus}, \mathrm{nACRo}^{4{ }^{\oplus}}, \mathrm{ALL}^{48}$
- All TripleCoatings ${ }^{3 ®}$ and QUADCoatings ${ }^{4 ®}$
- All SCIL ${ }^{\oplus}$ and LACS ${ }^{\circledR}$-Coatings available

Hardware

- Footprint: W2720 x D1721 x H2149 mm

- Vacuum chamber, internal sizes: W650 x D670 x H 675 mm
- Loading volume: $\varnothing 500 \times \mathrm{H} 494 \mathrm{~mm}$
- Coatable volume: $\varnothing 500 \times \mathrm{H} 420 \mathrm{~mm}$
- Max. load: 265 kg
- System with turbo molecular pump
- Revolutionary rotating (tubular) cathode system with 3 LARC ${ }^{\circledR} / 1$ CERC ${ }^{\circledR}$ cathodes:
- Magnetic Coil Confinement (MACC) for ARC control
- LARC ${ }^{\oplus}$: Up to 200A ARC current
- Changing time for skilled operator: approx. $15-30 \mathrm{~min} /$ cathode
- CERC $^{\circledR}$: Up to 300A ARC current
- SCIL: Up to 30 kW sputtering power
- VIRTUAL SHUTTER ${ }^{\circledR}$ and TUBE SHUTTER ${ }^{\circledR}$ with door shielding
- Ionic plasma cleaning:
- etching with gas (Ar/H2); glow discharge
- metal ion etching (Ti, Cr)
- LGD ${ }^{\circledR}$: LARC ${ }^{\circledR}$ Glow Discharge
- Pulsed BIAS supply 30 kHz (optional 350 kHz)
- 6 (+1) gas channels, 6 MFC controlled
- Special dust filters for heaters (24 kW)
- Preheater
- Electrical connection: $3 \times 400 \mathrm{~V}, 160 \mathrm{~A}, 50-60 \mathrm{~Hz}, 76 \mathrm{kVA}$
- Upgradeable with DLC², CERC ${ }^{\oplus}$, OXI, SCIL ${ }^{\oplus}$, LACS ${ }^{\oplus}$ options and to all at user's site

Electronics and Software

- New HMI (Human Machine Interface)
- Control system with touch-screen menu driven concept
- No programming knowledge is required for control
- Data logging and real-time viewing of process parameters
- Remote diagnostics and control
- Insite operator's manual and on CD-ROM
- Enhanced operating software compatible to $\pi^{\text {pク1 }}$

Optimal Cycle Times*

- Shank tools $(2 \mu \mathrm{~m})$: $\varnothing 10 \times 70 \mathrm{~mm}, 504 \mathrm{pcs}: 4 \mathrm{~h}$
- Inserts $(3 \mu \mathrm{~m})$: $\quad \varnothing 20 \times 6 \mathrm{~mm}, 2940 \mathrm{pcs}: 4.5 \mathrm{~h}$
- Hobs $(4 \mu \mathrm{~m})$: $\quad \varnothing 80 \times 180 \mathrm{~mm}, 28 \mathrm{pcs}: 6 \mathrm{~h}$
* The cycle times can be achieved under the following conditions:
- solid carbide tools (no outgassing necessary)
- high quality cleaning before the coating process (short etching)
- continuous operation (pre-heated chamber)
- 4-cathode processes
- use of fast cooling (e.g. with helium, opening the chamber at $200^{\circ} \mathrm{C}$)
- 5 (up to 6) batches / day

TLNTIT:

Coating Technologies of $\pi^{\text {Col2PLus }}$

ARC Technology with Rotating Cathodes

- LARC ${ }^{\circledR}$ LAteral Rotating Cathodes

DLC ${ }^{2 ®}$ Option

- PVD/PECVD process for deposition of a-C:H:X coatings

CERC ${ }^{\circledR}$ Option

- CERC ${ }^{\circledR}$ CEntral Rotating Cathode as booster

OXI Option

- For deposition of oxide and oxynitride coatings

SCIL ${ }^{\circledR}$ Option

- Sputtered Coatings Induced by LARC GD
- DC or pulsed

LACS ${ }^{\circledR}$ Option

- Lateral ARC \& Central Sputtering simultaneously
- Hybrid coating

Technologies and Coatings of $\pi^{\text {Li2PLUS }}$

ARC-Evaporation

- High ionization degree
- High coating density, high coating hardness
- Excellent adhesion
- High productivity
- Droplets cause rougher surface

High Performance Sputtering

- Lower ionization degree
- Lower coating density and hardness
- Moderate adhesion
- Lower deposition rate
- Few droplets, smooth surface

Sputter-Technology: SCIL ${ }^{\oplus}$: Sputter Coatings Induced by LGD ${ }^{\oplus}$ LGD ${ }^{\oplus}$: Lateral Glow Discharge

- PECVD-Technology for DLC ${ }^{2}$ coating
- For cutting of sticky materials with lubricating top coating
- SCIL ${ }^{*}$: High performance sputtering for smooth coatings
- For cutting, components, molds and dies
- LACS ${ }^{\circledR}$ Hybrid-Technology
- LAteral ARC and Central Sputtering simultaneously

Main Coatings of the $\pi^{\text {©ITPLUs }}$ Options

Options	Coatings Machines	Conventional Coatings	Nanocomposite Coatings	TripleCoatings ${ }^{\text {3® }}$	OUALCoatings ${ }^{4 ®}$
18	π^{4021} eco	TiN, TiCN, CrN, CrTiN, ZrN, AITiN, AlCrN	nACo ${ }^{20},{ }^{\text {nACRo }}{ }^{\text {20 }}$	$\begin{aligned} & \text { AICrN3 }{ }^{8}, \text { TiXCo }^{3^{\circ}}, \\ & A L L^{3^{\circ}}, \end{aligned}$	ALL ${ }^{\text {a }}$ eco
$\stackrel{\text { wipl }}{ }$	$\pi^{40210 L C}$	\boldsymbol{X}-VIc ${ }^{\text {a }}$	nACVIc ${ }^{\text {20 }}$		
教	$\pi{ }^{\text {Le2turbo }}$	AITiN, AICrN	nACo ${ }^{20}$, nACRo $^{\text {20 }}$		
(x)	$\pi^{\text {con20x1 }}$				$n A C o X^{40}$
	$\pi^{2025 c i L}$	TiB $_{2}$-SCIL ${ }^{\circ}$, WC/C, AITIN-SCIL', X-SCILVI \boldsymbol{c}^{2}, ta:C*			
P1/3	$\pi^{\text {422,4cs }}$	AICrN-LACs ${ }^{\text {® }}$		BorAC ${ }^{\text {® }}$	Borco ${ }^{\circ}$

[^0]
Cathode Configurations of $\pi^{622 p L L s}$

Typical Cathode Configurations

Ring Cathodes* for SCIL ${ }^{\oplus}$ with $\mathrm{Ti}, \mathrm{Cr}, \mathrm{AICr}, \mathrm{AlTi}, \mathrm{B}_{\mathrm{x}^{\prime}} \mathrm{Si}_{\mathbf{x}^{\prime}} \mathrm{TiB}_{2^{\prime}} \ldots \mathrm{W}$

The Main Parts of the SCIL ${ }^{\oplus}$ Cathodes with Rings

1. Cathode body, incl. magnetic \& electronic systems
2. Holed pipe for coolant inlet
3. Membrane pipe, tensed by inside cooling water for good conduction to the rings
4. Target rings

The non alloyed cathode allows the flexible programming and deposition of the coating stoichiometry.

PL L^{222} for Tools and Machine Components

Machines with 2 sputtering cathodes, DC and HIPIMS modes ø550x500 mm coatable volume.
Source: Fullandi, Shenzen, China
Many moving parts in the machinery and automotive industries do not need extra hard coatings.
The most important requirements are:

- Extremely high smoothness, and
- very low coefficients of friction.

Work Modes

- Monoblock sputtered (DC or HIPIMS) coatings (TiN, CrN) with very low roughness $\left(\mathrm{S}_{\mathrm{a}}<20 \mathrm{~nm}\right)$
- DLC (Diamond Like Coating) coatings with a very thin sputtered CrN or TiN adhesion layer ($\sim 200 \mathrm{~nm}$) plus
- DLC² $\left(\right.$ SCILVII $^{2}{ }^{\text {® }}$)
- with silicon doped amorphous carbon with hydrogen (a-C:H:Si)
- by a PECVD process from gases
- or DLC ${ }^{3}$ (ta:C ${ }^{\circledR}$)
- by a sputtering process (DC or HIPIMS)
- from carbon targets

Hardware

- Footprint: \quad W3300 \times D2300 $\times \mathrm{H} 2400 \mathrm{~mm}$
- Internal chamber size: W820 x D820 x H1100 mm
- Loading volume: $\quad \varnothing 500 \times \mathrm{H} 500 \mathrm{~mm}$
- Coatable volume: $\quad \varnothing 500 \times \mathrm{H} 450 \mathrm{~mm}$
- Max. load:

400 kg

Advanced Sputtering Technology

- PA3D Module to generate an ionizeded focus plasma into the carousel
- Two planar cathodes (with the standard sizes of the PL1011)
- DC or HIPIMS sputtering

Top quality coating

- good hardness (24-40 GPa)
- excellent surface finish (S_{a} down to 20 nm)
- excellent adhesion

Industry targeting

- cutting tools for non-ferrous machining application
- molds and dies, general engineering parts
- protection of cavities
- against corrosion
- against scratches
- sliding parts
- reduction of friction coefficient (~ 0.1 against steel)
- running dry

Applications with High Surface Quality

Mold Inserts \& Optical Mold Inserts

These applications are only possible, because of the excellent surface quality of the coating deposited by the $\boldsymbol{P} \boldsymbol{\Sigma} \boldsymbol{\geq 2}$

Mold Surfaces with Three Different Treatments

The high surface quality of three common used polishing treatment won't be reduced by the coating of the $\boldsymbol{P} \boldsymbol{\sim} \boldsymbol{\sim 1}$

Surface after fine sanding with emery paper

Textured surface by laser or electro-erosion

Coatings:

- CrN
- a-C:H:Cr

Mirror surface finish by diamond paste polishing

Surface Finish Before Coating

Surface Finish After Coating Keeping High Surface Quality after Coating

PLATIT PL

The Workhorse of Job Coating Centers

General Information

- High capacity hardcoating unit
- Based on PLATIT planar ARC technology
- Coatings on HSS and WC $\left(T \leq 500^{\circ} \mathrm{C}\right)$

Hard Coatings

- Monolayers, Multilayers, and Nanolayers
- Main standard coatings: TiN, TiCN-grey, AITiN-G
- Available TripleCoatings ${ }^{3 ®}$:
- TiN, ATTiN ${ }^{2}$, ALL³: Universal use, forming, hobbing, milling

Hardware

- Foot print: W3880 x D1950 x H2220 mm
- Internal chamber size: W1000 x D1000 x H1100 mm
- Loading volume: ø600-H780 mm
- Coatable volume: ø600-H680 mm
- Max. load: 400 kg
- Standard BIAS: 15kW DC, 1000V, optional: 20 kW, 250 kHz, 700V
- Double wall, stainless steel, water cooled chamber
- Front door loading, excellent access
- 4 planar cathodes with quick-exchange system
- Storage of 4 spare cathodes inside the cabinet
- Electrical connection: $3 x 400 \mathrm{~V}, 50-60 \mathrm{~Hz}, 95 \mathrm{kVA}$
- Modular carousel system with 2, 4, 8, and 12 as well as 3,6 , and 9 satellites

Electronics and Software

- Control system with touch-screen menu driven concept
- No programming knowledge is required for control
- Data logging and real-time viewing of process parameters
- Remote diagnostics and control
- Insite operator's manual

Options

- ARC in DC and pulsed mode
- DLC² in PECVD mode

Cycle Times*

- Shank tools $(2 \mu \mathrm{~m})$: $\varnothing 10 \times 70 \mathrm{~mm}, 1080 \mathrm{pcs}: 6.25 \mathrm{~h}$
- Inserts ($3 \mu \mathrm{~m}$): $\varnothing 20 \times 6 \mathrm{~mm}, 8700 \mathrm{pcs}: 6.5 \mathrm{~h}$
- Hobs $(4 \mu \mathrm{~m})$: $\quad \varnothing 80 \times 180 \mathrm{~mm}, \quad 48 \mathrm{pcs}: 7.0 \mathrm{~h}$
*: The cycle times can be achieved under the following conditions:
- solid carbide tools (no outgassing necessary)
- high quality cleaning before the coating process (short etching)
- continuous operation (pre-heated chamber)
- 4-cathode processes
- use of fast cooling (e.g. with helium, opening the chamber at $200^{\circ} \mathrm{C}$)
- 3 batches / day

With easy loading, different tool types and sizes can be mixed and coated in one batch.

THTITE

Typical Substrates Coated by PL 2022

Parts for Cutting Tools, Injection Molding, and Die Casting

PLATIT π^{2521}

The High Volume Machine with Rotating and Planar Cathodes

General Information

- High capacity hardcoating unit
- Based on PLATIT rotating (LARC ${ }^{\circledR}$) and planar-cathodic-ARC-technology
- Coatings on HSS and WC $\left(T \leq 500^{\circ} \mathrm{C}\right)$

Hard Coatings

- Monolayers, Multilayers, and Nanolayers
- Nanocomposites, TripleCoatings ${ }^{38}$ and OUADCoatings ${ }^{\text {® }}$
- Main Standard Coatings: AICrN ${ }^{3}$, AICrTiN ${ }^{4}$, TiXCo ${ }^{4}$

Hardware

- Foot print: W4882 x D2181 x H3354 mm
- Internal chamber size: W1000 x D1000 x H1100 mm
- Loading volume: $\varnothing 600 \times \mathrm{H} 780 \mathrm{~mm}$
- Coatable volume: ø600 - H680 mm
- Max. load: 400 kg
- BIAS: 20 kW, 350 kHz, 750 V
- Double wall, stainless steel, water cooled chamber
- Front door loading, excellent access
- 3 LARC ${ }^{\ominus}-\mathrm{XL}$ rotating cathodes in the door
- 2 planar cathodes in the back as boosters, with quick exchange system
- All 5 cathodes controlled by pulsed ARC supplies
- Electrical connection: $3 \times 400 \mathrm{~V}, 50-60 \mathrm{~Hz}, 100 \mathrm{kVA}$
- Modular carousels with 2, 4, 8, 12 satellites

Electronics and Software

- Control system with touch-screen menu driven concept
- No programming knowledge is required for control
- Data logging and real-time viewing of process parameters
- Remote diagnostics and control
- Insite operator's manual

Cycle Times*

- Shank tools $(2 \mu \mathrm{~m})$: $\varnothing 10 \times 70 \mathrm{~mm}, 1080 \mathrm{pcs}: 7.0 \mathrm{~h}$
- Inserts $(3 \mu \mathrm{~m})$: $\quad \varnothing 20 \times 6 \mathrm{~mm}, 8700 \mathrm{pcs}: 7.5 \mathrm{~h}$
- Hobs $(4 \mu \mathrm{~m})$: $\quad \varnothing 80 \times 180 \mathrm{~mm}, \quad 48 \mathrm{pcs}: 8.0 \mathrm{~h}$
*: The cycle times can be achieved under the following conditions:
- solid carbide tools (no outgassing necessary)
- high quality cleaning before the coating process (short etching)
- continuous operation (pre-heated chamber)
- 5 -cathode processes
- use of fast cooling (e.g. with helium, opening the chamber at $200^{\circ} \mathrm{C}$)
- 3 batches / day

TLATITE:

Most Important Features

High Capacity Coating Unit

- 5 cathodes can run simultaneously 3x LARC ${ }^{\circledR}$-XL LAteral Rotating Cathodes
- Main cathodes: Ti, Al, AISi+, Cr, TiSi

2x planar ARC Cathodes

- Main cathodes: AICr, AITi, Ti
- Deposition of TripleCoatings ${ }^{3 \text { ® }}$ and QuadCoatings ${ }^{4 ®}$
- Up to 3 batches / day, even with 3 different coatings

High Loadability

- Robust and easy change of loads

Optimal Adhesion due to

- Virtual shutter and
- tUBE SHUTTER
- LARCGD
- Planar shutters for the planar cathodes

Combination of 2 PLATIT Technologies

Main Application Fields

- Molds and dies with small and large dimensions (for forging, fine blanking, stamping, bending, etc.)
- Cutting tools, especially with larger dimensions (saw blades, hobs, broaches)
- Job coating services

Heater

5: Planar cathode 2
default AlCr

Planar shutter 2

Heater

Satellites
default 8

TUBESHUTTER

1: LARC ${ }^{\ominus}$ - XL cathode 1 default Ti

2: LARC $^{\oplus}-$ XL cathode 2 default AI

4: Planar cathode 1 default AlCr

Planar shutter 1

Heater

Substrate carousel

TUBESHUTTER

3: LARC $^{\circledR}-\mathrm{XL}$ cathode 3
default Cr

Application Fields of the π^{25012}

Tools for Forming, Cutting, Molds \& Dies, Forging

Deep Drawing, Casting, Bending, Fine Blanking

Carousels for π^{222} and π^{2522}

Carousel for single rotation D $\leq 355 \mathrm{~mm}$

Single rotation carousel for molds, dies and saw blades with

$P L^{2022} / \pi^{2522}$

4 axis carousel for molds and dies - $\mathrm{D} \leq 270 \mathrm{~mm}$

4 axis carousel for continuous triple rotation with gearboxes $D \leq 143 \mathrm{~mm}$

2 axis carousel for saw blades with overlapping $D \leq 450 \mathrm{~mm}$

Multiple carousel with changeable 4, 8, 12 axes

10 axis carousel for continuous double rotation D $\leq 82 \mathrm{~mm}$

3 axis carousel for saw blades
D $\leq 420 \mathrm{~mm}$ with overlapping
$\mathrm{D} \leq 250 \mathrm{~mm}$ without overlapping

10 axis carousel for hobs and gearboxes $D=143 \mathrm{~mm}$

Lightweight Carousels for $\pi^{\text {C.27pLus }}$

Single rotation carousel D1 $=500 \mathrm{~mm}$ for saw blades D1 $=460 \mathrm{~mm}$ for molds and dies

7 axis carousel D7 $=143 \mathrm{~mm}$

4 axis dedicated asymmetric carousel D3 $=183 \mathrm{~mm} / \mathrm{D} 1=250 \mathrm{~mm}$

3 (6) axis carousel $D 3=220 \mathrm{~mm} / \mathrm{D} 6=150 \mathrm{~mm}$

4 (8) axis carousel
D4 $=215 \mathrm{~mm} / \mathrm{D} 8=115 \mathrm{~mm}$

12 (6) axis carousel $D 12=100 \mathrm{~mm} / \mathrm{D} 6=145 \mathrm{~mm}$

3 axis carousel for saw blades with overlap
Max. saw blade $\mathrm{D}=285 \mathrm{~mm}$

5 (10) axis carousel $\mathrm{D} 5=175 \mathrm{~mm} / \mathrm{D} 10=94 \mathrm{~mm}$

14 axis carousel D14 $=85 \mathrm{~mm}$

Holders for Cutting Tools

	Holders	Application
Plates with gears, as holders for sleeves		The gears are rotating stepwise, driven by kickers from the side. Plates and gears are available for the different standard diameters of shank tools in the range of $\mathrm{d}=2.2-52 \mathrm{~mm}$
Gearboxes for triple rotation for shank tools with shank diameter D and with gear positions \#N		For special big shank tools $D \leq 52 \mathrm{~mm}\left(2^{\prime \prime}\right)-N=4$ Special sleeves are necessary
Gearboxes for triple rotation for shank tools with shank diameter D and with gear positions \#N		For rotating sleeves Gearbox 1: $D=143 \mathrm{~mm} \quad$-Gearbox 2: $D=170 \mathrm{~mm}$ $\mathrm{D} \leq 40 \mathrm{~mm}-\mathrm{N}=6$ $\mathrm{D} \leq 25 \mathrm{~mm}-\mathrm{N}=8 \quad-\mathrm{N}=10$ $\mathrm{D} \leq 20 \mathrm{~mm}-\mathrm{N}=12$ $\mathrm{D} \leq 14 \mathrm{~mm}-\mathrm{N}=18 \quad-\mathrm{N}=22$ The tools are rotating uninterruptedly around the own axes. It allows very homogeneous coating around the tools. Gearboxes make loading of batches significantly easier.
Quad-Gearboxes (4-fold rotation)		For holding big quantities of shank tools $\mathrm{D}=1 \mathrm{~mm}-1 / 8^{\prime \prime}: 5 \times 14$ positions $=70$ tools $\mathrm{D}=4-8 \mathrm{~mm}$: 5×9 positions $=45$ tools The whole batch usually contains the same tools. They are rotating around their own axes.
Sleeves		For standard shank tools. Diameters: [mm] $6,8,10,12,14,16,18,20,22,25,32$ and 1/8", 3/16", 1/4", 3/8", 1/2",4/7", 5/8", 3/4", 7/8", 1" Special diameters on request
Revolvers for shank tools with shank diameter D and with positions \#N		$\begin{array}{lr} D=2.2 \mathrm{~mm}- & \mathrm{N}=12 \\ \mathrm{D}=1 / 8^{\prime \prime}(3.4 \mathrm{~mm})- & \mathrm{N}=9 \\ \mathrm{D}=4.1 \mathrm{~mm}- & \mathrm{N}=6 \\ \mathrm{D}=5 \mathrm{~mm}- & \mathrm{N}=6 \\ \mathrm{D}=6 \mathrm{~mm}- & \mathrm{N}=4 \end{array}$ The tools are not rotating around the own axes.

	Holders	Application
Insert holders with satellites and rods		Satellites for inserts with diameter / edge length [mm] d / $\square: 8.5,12,14,19,20,27,29.5,42$ Satellites positions: 6, 9, 15, 18 Support ring for rods of small inserts. Rods according to the hole diameters of the inserts: $d>2.4,3.7,4.2,5.2,6.2 \mathrm{~mm}$ TongS keep the inserts without holes, spindled on special rods. TongS are products of 4pvd, Aachen, Germany.
Hob holders for shank hobs and bore hobs		The parts of hob satellites are set together according to the sizes and dimensions of the different hobs.
Holders deep drawing dies (rings)		The deep drawing rings are fixed by screws, hanging on "fork" holders.
Cage for double rotation Dummy cage		Cages for simple flat shapes, which can be laid down, like certain molds, dies, and inserts. Dummy cages have to fill the empty places in the carousels.
Vertical holders for fine blanking tools, punches and components		Flat parts, punches, and fine blanking tools should be coated on one side only. Therefore only double rotation is necessary. The vertical holders with slots enable flexible clamping of the tools by screws or magnets.

Loading Capacities $\pi^{321 P L L S} / \pi^{\text {LeVTPLLS }}$

		Tool Diameter	Tool Length	Satellites	Discs / Satellite	Holders / Disc	Tools / Holder	Tools / Disc	Tools / Batch
$$	End mills	2 mm	50 mm	4	5	8	12	96	1920
		6 mm	50 mm	1	5	52	1	52	260
		6 mm	50 mm	4	4	5	9	45	720
		6 mm	50 mm	4	5	18	1	18	360
		8 mm	60 mm	4	4	18	1	18	288
		10 mm	70 mm	4	4	18	1	18	288
		16 mm	75 mm	4	3	12	1	12	144
		20 mm	100 mm	4	3	8	1	8	96
		32 mm	133 mm	4	2	6	1	6	48
	Drills	3 mm	46 mm	4	5	5	14	70	1400
		4.2 mm	55 mm	4	5	5	9	45	900
		6.8 mm	74 mm	4	4	8	4	32	512
		8.5 mm	79 mm	4	4	18	1	18	288
		10.2 mm	102 mm	4	3	18	1	18	216
		16 mm	115 mm	4	3	12	1	12	144
		20 mm	131 mm	4	2	12	1	12	96
		25 mm	170 mm	4	2	8	1	8	64
	Inserts	20 mm	6 mm	4	1	15	28	420	1680
	Hobs	120 mm	200 mm	4	2	1	1	1	8
		80 mm	180 mm	10	2	1	- 1	1	20
						Average number of tools / batch			473
	End mills	2 mm	50 mm	7	5	8	12	96	3360
		6 mm	50 mm	7	4	5	9	45	1260
		6 mm	60 mm	7	4	18	1	18	504
		8 mm	60 mm	7	4	18	1	18	504
		10 mm	70 mm	7	4	18	1	18	504
		16 mm	75 mm	7	3	12	1	12	252
		20 mm	100 mm	7	3	8	1	8	168
		32 mm	133 mm	7	2	6	1	6	84
	Drills	3 mm	46 mm	7	5	5	14	70	2450
		4.2 mm	55 mm	7	5	5	9	45	1575
		6.8 mm	74 mm	7	4	8	4	32	896
		8.5 mm	79 mm	7	4	18	1	18	504
		10.2 mm	102 mm	7	3	18	1	18	378
		16 mm	115 mm	7	3	12	1	12	252
		20 mm	131 mm	7	2	12	1	12	168
		25 mm	170 mm	7	2	8	1	8	112
	Inserts	20 mm	6 mm	7	1	15	28	420	2940
	Hobs	120 mm	200 mm	7	2	1	1	1	14
		80 mm	180 mm	14	2	1	1	1	28
						Average number of tools / batch			840

Only standard holders were used for capacity calculations. Capacity can be increased with dedicated holders. \square tools in sleeves driven by kickers
tools in sleeves driven by gearboxes tools in revolvers driven by kickers tools in revolvers driven by gearboxes
tools in sleeves driven by quad-gearboxes inserts with holes fixed on rods hobs on satellites

$P L^{212} / P L^{2022} / \pi^{2522}$

		Tool Diameter	Tool Length	Satellites	Discs / Satellite	Holders / Disc	Tools / Holder	Tools / Disc	Tools / Batch
	End mills	2 mm	50 mm	6	5	8	12	96	2880
		6 mm	50 mm	6	5	8	4	32	960
$\stackrel{i}{N}$		6 mm	60 mm	6	5	18	1	18	540
		8 mm	60 mm	6	5	18	1	18	540
		10 mm	70 mm	6	4	18	1	18	432
		16 mm	75 mm	6	4	18	1	18	432
		20 mm	100 mm	6	3	18	1	18	324
		32 mm	133 mm	6	2	14	1	14	168
	Drills	3 mm	46 mm	6	5	8	6	48	1440
		4.2 mm	55 mm	6	5	8	6	48	1440
		6.8 mm	74 mm	6	4	8	4	32	768
		8.5 mm	79 mm	6	4	18	1	18	432
		10.2 mm	102 mm	6	3	18	1	18	324
		16 mm	115 mm	6	3	18	1	18	324
		20 mm	131 mm	6	2	18	1	18	216
		25 mm	170 mm	6	2	12	1	12	144
	Inserts	20 mm	6 mm	6	33	15	1	198	2970
	Hobs	120 mm	200 mm	6	3		1	1	18
		80 mm	180 mm	6	4		1	1	24
						Average number of tools / batch			757
	End mills	2 mm	50 mm	10	8	8	12	96	7680
PL $2022 / \pi^{2522}$		6 mm	50 mm	10	7	5	14	70	4900
		6 mm	60 mm	10	7	18	1	18	1260
		8 mm	60 mm	10	7	18	1	18	1260
		10 mm	70 mm	10	6	18	1	18	1080
		16 mm	75 mm	10	6	12	1	12	720
		20 mm	100 mm	10	5	12	1	12	600
		32 mm	133 mm	10	4	6	1	6	240
	Drills	3 mm	46 mm	10	7	5	14	70	4900
		4.2 mm	55 mm	10	7	5	14	70	4900
		6.8 mm	74 mm	10	6	8	4	32	1920
		8.5 mm	79 mm	10	6	18	1	18	1080
		10.2 mm	102 mm	10	5	18	1	18	900
		16 mm	115 mm	10	4	12	1	12	480
		20 mm	131 mm	10	4	12	1	12	480
		25 mm	170 mm	10	3	12	1	12	360
	Inserts	20 mm	6 mm	10	58	15	1	580	8700
	Hobs	120 mm	200 mm	12	3		1	1	36
		80 mm	180 mm	12	4		1	1	48
						Average number of tools / batch			2187

Only standard holders were used for capacity calculations. Capacity can be increased with dedicated holders. \square tools in sleeves driven by kickers tools in sleeves driven by kickerstools in revolvers driven by kickers tools in revolvers driven by gearboxes
\square seeves driven by quad-gearboxes inserts with holes fixed on rods hobs on satellites

Customized Coating Units for Special Applications

During the last two decades PLATIT successfully grew a large worldwide network of customers, who came to PLATIT with their special demands. Due to the increase of these special demands, PLATIT decided to specialize its team in Vaulruz, Switzerland to engineer and produce special machines.

The engineers and technicians are specialized in:

- concept development
- advice \& consultation
- mechanical \& electrical equipment design
- customer specific programming
- manufacturing with a local network of Swiss companies
- factory acceptance test and commissioning at customers' facilities
- machine and process support \& spare parts.

Systems developed, produced and delivered to the following sectors:

- Cutting tools: manufacturers of large cutting tools like broaches \& saw blades
- Aerospace: anti-abrasion, anti-erosion hard coatings, scratch resistance coatings
- Plastic injection: extra smooth coatings for corrosion and scratch protection \& lubricant films for moving elements with minimum lubrication and tight tolerances
- Medical industries: bio compatible coatings for dental components and medical devices

Technologies implemented and delivered:

- ARC - in DC \& pulsed modes
- Sputtering - in DC, pulsed \& HiPIMS (High-Power Impulse Magnetron Sputtering) modes and
- PECVD (Plasma Enhanced Chemical Vapor Deposition) mode

Sophisticated special systems, requiring special machine designs, holders, handlings and coatings:

- machine and medical components
- saw bands
- saw blades, and
- broaches

π^{603} for Coating of Saw Bands

Three rotating cathodes for flexible deposition

Saw band up to 200 mm height can be coated. The tool holder table is inclined to achieve constant thickness distribution.

Saw band coils up to 1.4 m diameter can be coated. The back side of the saw band is deposited with a help of a planar target.

Development of Dedicated Coatings for Saw Bands

Dedicated Units for Saw Blades

PL2001 for saw blades

- Extremely high capacity hardcoating unit for large tools and substrates
- Based on PLATIT planar-cathodic-ARC-technology
- Coatings on HSS and WC $\left(T \leq 500^{\circ} \mathrm{C}\right)$

Hardware

- Foot print: W3880 x D2350 x H2220 mm
- Internal chamber size: W1700 x D1700 x H1100 mm
- Coatable volume: up to Ø1200 x H700 mm
- Max. substrate load: 800 kg
- 4 PLATIT cathodes with quick-exchange system fully compatible with the PL1001 COMPACT cathodes
- Electrical connection: $3 \times 400 \mathrm{~V}, 50-60 \mathrm{~Hz}, 110 \mathrm{kVA}$
- Modular carousel system with 1, 2, 3, 4, 6, 8 satellites

Single loading

Loading with overlapping

Loading capacities

				π^{6017}	$P L^{\text {DOP1 }}$	$P L^{2011}$	π^{6011}	$P L^{\text {017 }}$	$P L^{2011}$
Saw sizes [mm]	Saw sizes ["]	blade thickness	spacing between	\# of satellites	\# of satellites	\# of satellites	\# of blades per load	\# of blades per load	\# of blades per load
100	3.94	1.5	7	10	12	24	518	988	1976
120	4.72	1.5	7	8	12	20	414	988	1647
160	6.30	1.5	7	6	8	14	311	659	1153
200	7.87	2	10	4	4	10	147	233	583
225	8.86	2	10	3	4	8	110	233	467
250	9.84	2	10	2	4	8	73	233	467
275	10.83	2	10	1	4	6	37	233	350
300	11.81	2	10	1	3	6	37	175	350
315	12.40	2	10	1	3	6	37	175	350
325	12.80	2	10	1	3	5	37	175	292
350	13.78	2.2	10	1	2	5	36	115	287
360	14.17	2.2	10	1	2	5	36	115	287
400	15.75	2.2	10	1	1	4	36	57	230
450	17.72	2.2	10	1	1	3	36	57	172
500	19.69	2.2	10	1	1	1	36	57	57
550	21.65	3	14	0	1	1	0	41	41
560	22.05	3	14	0	1	1	0	41	41
620	24.41	3	14	0	1	1	0	41	41
830	32.68	3.5	16	0	0	1	0	0	36
965	37.99	4	19	0	0	1	0	0	30
1066	41.97	4	19	0	0	1	0	0	30

Applications

Tool Life Comparison at Sawing
 Setting the distance holder for big saw blades before coating

 Lf [m²]
 Material: 42CrMo4 - Outer Coolant: emulsion Tool: $250 \mathrm{~mm}-\mathrm{v}_{\mathrm{c}}=100 \mathrm{~m} / \mathrm{min}-\mathrm{f}_{2}=0.06 \mathrm{~mm} / \mathrm{z}$

Thickness Reduction at "Depth" at Overlapped Coating of Saw Blades

Sawing

Tool Life Comparison

Precision cutting of 3 mm profiles, stainless steel 904L
Tool: carbide circular sawblade $\emptyset 160 \mathrm{~mm} \times 0,8 \mathrm{~mm}, \mathrm{z}=200$
Cutting conditions: $n=400 \mathrm{rev} / \mathrm{min}, v_{\mathrm{f}}=64 \mathrm{~mm} / \mathrm{min}$, lubrication: oil Life time criterion: Burr formation on work piece Source: Swiss watch industry

Dedicated Units for Broaches

PL1401-HUT for Broaches

- Based on PLATIT planar-cathodic-ARC-technology
- After coating the first half, the broaches must be turned to coat the other half in a second batch

Hardware

- Coatable volume: $\varnothing 700 \times \mathrm{H} 700 \mathrm{~mm}+\varnothing 150 \times \mathrm{H} 700 \mathrm{~mm}$
- Max. length of broaches: 2000 mm
- Max. coatable lengths on broaches: $2 \times 700 \mathrm{~mm}$
- Max. substrate load: 400 kg
- 4 PLATIT cathodes with quick-exchange system fully compatible with the PL1001 COMPACT cathodes
- Modular carousel system with $1,2,3,4,6,8$ satellites

PL2511 for Extra Long Broaches

- Based on PLATIT planar-cathodic-ARC-technology
- The extra long broaches are coated in 1 batch

Hardware

- Coatable volume: $\varnothing 700 \times 700-2$ 2'000 mm
- Max. length of a broach: 2500 mm
- Max. substrate load: 600 kg
- 6 PLATIT cathodes with quick-exchange system, fully compatible with the PL1001 compact cathodes
- Modular carousel system with 1, 2, 4, 6, 8 satellites
- The coating unit and the loading system are to be embedded into the special fundament of the work floor

Dedicated 1-Chamber Cleaning System for Broaches

- Max. broach length: 2500 mm
- Max. broach load: 600 kg
- Cycle time <1 h

PL
 2512 Cathodes \& Targets \& Carousel

Cathode Configuration

Caroussels

- Smart and flexible carousel design
- 4 satellites - max. $4 x \quad \emptyset 270$ mm
- 8 satellites - max. $8 x \quad \emptyset 176$ mm
- 12 satellites - max. $12 \times ø 92 \mathrm{~mm}$
- Highest flexibility offered to accommodate dedicated loads but also mixed loads
- Coating range 2000 mm with excellent thickness distribution across height: $\pm 10 \%$
- ø700 and $\mathrm{H}=2500 \mathrm{~mm}$ maximum tool size
- 600 kg maximum loading capacity; higher loads on demand
- Smart carousel design solution offering 1 fold, 2 fold and 3fold rotation on one platform
- Loading availability for broaches, hobs and any other kind of shank type tools, even molds \& dies parts

Loading Table

Broaches - Length [mm]				
	0-600	601-1100	1100-2500	Carousel configuration
pcs./plate x plate/spindle x number of spindles				
ø Round Broaches [mm]				
$0<\varnothing<30$	96	64	32	Standard 4 spindles, 8 position plates
	$8 \times 3 \times 4$	$8 \times 2 \times 4$	$8 \times 1 \times 4$	
$30<\varnothing<50$	48	32	16	Standard 4 spindles, 4 position plates
	$4 \times 3 \times 4$	$4 \times 2 \times 4$	$4 \times 1 \times 4$	
$50<\varnothing<80$	36	24	12	12 spindle carousel, no plates
	$1 \times 3 \times 12$	$1 \times 2 \times 12$	$1 \times 1 \times 12$	
$80<\varnothing<100$	24	16	8	8 spindle carousel, no plates
	$1 \times 3 \times 8$	$1 \times 2 \times 8$	$1 \times 1 \times 8$	
$100<\emptyset<250$	12	8	4	4 spindle carousel, no plates
	3×4	2×4	1×4	
Square Broaches [mm]				
20×50	120	80	40	4 spindle carousel, flat plates
	$10 \times 3 \times 4$	$10 \times 2 \times 4$	$10 \times 1 \times 4$	
30×30	96	64	32	4 spindle carousel, flat plates
	$8 \times 3 \times 4$	$8 \times 2 \times 4$	$8 \times 1 \times 4$	
40×60	72	48	24	4 spindle carousel, flat plates
	$6 \times 3 \times 4$	$6 \times 2 \times 4$	$6 \times 1 \times 4$	
50×100	36	24	12	4 spindle carousel, flat plates
	$3 \times 3 \times 4$	$3 \times 2 \times 4$	$3 \times 1 \times 4$	
60×200	24	16	8	4 spindle carousel, flat plates
	$2 \times 3 \times 4$	$2 \times 2 \times 4$	2×4	

Turnkey Solutions

$\pi \pi^{422 P L U S}$

The integration of flexible coating into the manufacturing production requires complete turnkey solutions.
PLATIT offers complete coating systems including all necessary peripheral equipment and technologies for:

- surface pretreatment by polishing, brushing and/or micro blasting,
- one-chamber vacuum cleaning with "start-and-forget" operation,
- stripping of coatings from HSS and carbides,
- handling for loading and unloading of substrates and cathodes,
- and quality control systems according to ISO 9001.

Coating

Quality Control

Cleaning

Work Flow in a

Small Coating Center

Work Flow in Minimal Coating Center

1. Incoming goods
2. Preparations for cleaning (e.g. microblasting)
3. Cleaning

3a. Optionally: stripping
3b. Optionally: edge preparation (e.g. brushing, micro blasting, etc.)
3c. Optionally: post treatment (e.g. micro blasting, polishing, etc.)
3d. Optionally: cleaning after pre or post treatment
4. Preparations for coating (e.g. loading carousels)
5. Coating
6. Unload charge

Optionally post surface treatment
7. Check quality with POCS
8. Packing for shipping
9. Outgoing goods / shipping

Some equipment (chiller, stripping, microblasting, edge preparation) should be set up in a different room, apart from the coating area. The chiller can be placed outside.

Stripping and its Ways

Under optimum conditions the electro-chemical stripping can be carried out without damaging the substrates. However, normally it damages the substrates, especially carbides with cobalt leaching.

What is Cobalt-Leaching?

Removal of some cobalt from the top surface of the composite material tungsten carbide consisting of WC (grains) and cobalt (matrix).
Reason: Removal of cobalt by oxidation, mainly by contact with water:

- Water cooled grinding
- Too fast grinding with blunt grinding wheel (even when cooling with oil)
- Water based stripping

Coating of cobalt-leached carbide is useless. The coating has in fact a good adhesion to the top WC layer, but both peel off together at the first cut because the binding cobalt is missing.

Stripping at conventional and integrated coating service

The conventional way

The risk of bad adhesion is very high. The stripping takes place after regrinding and damages the final geometry of the tool. The edge preparation after stripping can reduce the damage only. Additionally, packing, transport, and repackaging increase the risk of tool damaging enormously.

The integrated way

The stripping can be done prior to the regrinding. This creates a lot of advantages for your production:

- Less transport and packaging, less damages by handling
- No chemical destruction after regrinding, the edge preparation unfolds to its full effect (regularly)
- Optimum adhesion
- The performance is close to a new tool.

Stripping of PLATIT Coatings

Conventional Decoating Modules (ST Series)

Solid carbide drill coated with AITiN

Stripped solid carbide drill

Machine	Description	Max. Tool Dimensions (WxDxH)
1. ST-40 HM	Decoating Ti, Al based coatings from carbide	$160 \times 330 \times 160 \mathrm{~mm}$
2. ST-40 CR	Decoating Cr based coatings from carbide and HSS	$330 \times 330 \times 300 \mathrm{~mm}$
3. ST-40 HSS	Decoating Ti, Al, Cr based coatings from HSS	$330 \times 240 \times 200 \mathrm{~mm}$
4. ST-40 R	Rinsing module	$330 \times 330 \times 300 \mathrm{~mm}$
5. ST-40 P	Corrosion protection module	$330 \times 330 \times 300 \mathrm{~mm}$
6. ST-170-CR	Decoating Cr based coatings from carbide and HSS	$330 \times 1100 \times 200 \mathrm{~mm}$ (for 7 hobs with $\varnothing 80 \times 180 \mathrm{~mm}$)
7. ST-170 HSS	Decoating Ti, Al based coatings from HSS	$330 \times 1100 \times 200 \mathrm{~mm}$ (for 7 hobs with $\varnothing 80 \times 180 \mathrm{~mm}$)
8. ST-500 HSS	Decoating Ti, Al, Cr based coatings from HSS	$500 \times 500 \times 400 \mathrm{~mm}$
9. ST-500 CR	Decoating Cr based coatings from carbide and HSS	$500 \times 500 \times 400 \mathrm{~mm}$
10. ST-500 R	Rinsing module	$500 \times 500 \times 400 \mathrm{~mm}$
11. ST-500 P	Corrosion protection module	$500 \times 500 \times 400 \mathrm{~mm}$

Super Fast Decoating System CT20/CT40 (Patented)

- Free programmable computer controlled decoating unit
- The decoating process is supplied by pulsed signal
- Automatic process end detection possible
- Max. tool dimensions: ø200 x 300 mm

1. Stripping of coatings with TiN adhesion layer

- Ultra fast stripping down to TiN
- Recoating on TiN or
- Stripping of the TiN adhesion layer with ST-40 modules
- No cobalt leaching

2. Stripping of coatings without TiN adhesion layer

- Ultrafast stripping down to the substrate material
- Post treatment needed

Special insulated holders are available for shank tools, hobs and inserts.
Decoating-chemicals available through the worldwide distribution network of Borer AG, Zuchwil, Switzerland.

CT20: with $1+1$ baths
CT40: with $2+2$ baths

Decoating Processes

Conventional Decoating Processes

Carbide Shank Tools										HSS Hobs									
				Chemicals										Chemicals					
			$\begin{aligned} & \text { O } \\ & \overline{\#} \\ & \text { D } \end{aligned}$		8 \vdots 0 0 0 0 0	ㄷ $\stackrel{0}{0}$ 0 0 0		0 0 0 0 0 0						ェ 品 0 0 0	$\begin{aligned} & \bar{\sim} \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \end{aligned}$		0 0 0 0 0 0	+ + 0 0 0 0 0 0 0 0 0	－
TiN	4－5h	T－HM	HM	x	x	x	x		x	－ 1 h	T－HSS	HSS		x				x	
TiCN－grey	6－8h	T－HM	HM	x	x	x	x		x	$\sim 2 \mathrm{~h}$	T－HSS	HSS		x				x	
TiAIN	10－18 h	T－HM	HM	x	x	x	x		x	1－2h	T－HSS	HSS		x				x	
AITiN	10－18 h	T－HM	HM	x	x	x	x		x	1－2h	T－HSS	HSS		－				x	
CrN	0．5－3 h	C	Cr				x	x	x	0．5－3 h	C	Cr			x	x	x		x
AICrN	0．5－2 h	C	Cr				x	x	x	0．5－2h	C	Cr			x	x	x		x
TiN／AICrN	0．5－2h	C／T－HM	Cr／HM	x	x	x	x	x	x	0．5－2h	C／T－HSS	Cr／HSS		x	x	x	x	x	x
nACo	9－11 h	T－HM	HM	x	x	x	x		x	0．5－2h	T－HSS	HSS		x				x	
nACRo	0．5－2 h	C	Cr				x	x	x	0．5－2h	C	Cr			x	x	x		x
TiXCo	5－9h	T－HM	HM	x	x	x	x		x	1－3h	T－HSS	HSS		x				x	

Fast Decoating Processes

Carbide Shank Tools

							Chemicals		
$\begin{aligned} & \text { 믇 } \\ & \text { 苞 } \end{aligned}$		\sim 0 0 0			苃		8 0 0 0	$\begin{aligned} & \text { I } \\ & \stackrel{\rightharpoonup}{0} \\ & \underset{0}{0} \\ & 0 \end{aligned}$	
TiN			4－5h	T－HM		X	X	X	x
TiCN－grey			6－8h	T－HM		X	x	X	X
TiAIN	2 min	X	15 min	T－HM		X	X	X	X
AITiN	2 min	x	15 min	T－HM		X	X	X	x
CrN	2 min	X			x				
CrTiN－ML	2 min	X	15 min	T－HM		X	X	X	X
AICrN	2 min	X			X				
TiN／AICrN	2 min	X	15 min	T－HM		X	x	X	x
AITiCrN	2 min	X	15 min	T－HM		X	X	X	x
nACo	2 min	X	15 min	T－HM		X	X	X	X
nACRo	2 min	X			X				
TiXCo	2 min	X	1 h	T－HM		X	X	X	X

HSS Hobs

	Chem				Chemicals		
		0 $\stackrel{\rightharpoonup}{0}$ 0 0 0					
			1 h	T－HSS		x	x
			2 h	T－HSS		x	x
			1－2h	T－HSS		x	x
			1－2h	T－HSS		x	x
10 min	x	x			x		
10 min	x	x	10 min	T－HSS		x	x
10 min	x	x			x		
5 min	x	x	10 min	T－HSS		x	x
10 min	x	x	10 min	T－HSS		x	x
			0．5－2h	T－HSS		x	x
10 min	x	x			x		
			1－3h	T－HSS		x	x

Cleaning Units

V111, V411, V1511

Industrial single chamber cleaning units for fully automatic cleaning and vacuum drying of:

- Cutting tools, molds and dies, machine components
- Also for difficult to clean parts with cavities
- Developed in cooperation with Eurocold, Italy

These products include:

- Single chamber cleaning unit with detergent (alkaline) tank, demineralized water tank, vacuum drying system
- Water preparation: water softener, reverse osmosis, demi water
- Detergent, salt (to be ordered in user's country)
- Easy to understand touch screen for programming and handling like on the PLATIT coating units
- CleX ${ }^{\circledR}$ modular holder system for carrying shank tools, inserts and hobs

Max. dimensions of substrates to be cleaned: W×DxH [mm]:		
V111	V411	V1511
$355 \times 390 \times 480$	$500 \times 500 \times 500$	$700 \times 700 \times 750$

Washing Cycle (~45 min)

Consider wastewater regulations of your country!

Cleaning and its Control

Modular Manual Cleaning Unit

- CL - 40 EL: Module for electrolytic cleaning
- CL - 40 US: Module for ultrasonic treatment
- CL-40 R: Module for rinsing
- CL-40 D: Oven for drying

Cleaning unit for laboratories and institutes, which do not need automatic cleaning of higher substrate quantities.
The substrates are carried in special baskets by hand from module to module.

1. Rinsing away the raw dust using tap water
2. Precleaning the substrates using ultrasonic in demineralized water or in detergent
3. Rinsing using demineralized water
4. Fine cleaning using electrolytic treatment
5. Rinsing using demineralized water

See basket sizes on pages 56-57.

Cleanness - Coatability Evaluation by Measuring Surface Tension

Only a metallic clean surface leads to good adhesion of the coating.
The surface tension (energy) on the substrate is one decisive criterion for the adhesion of coatings.
The higher the surface tension of the substrate, the better the adhesion of the coating. Contaminations like grease, oil, finger prints, or dust decrease the surface energy.

The minimum surface energy should be $42 \mathrm{mN} / \mathrm{m}$ on the cleaned substrates before coating.

The drop method can characterize the surface energy of the substrate on an easy way: The measuring set contains a series of pens or inks. The testing fluid is applied by pens or inks to the surface of the substrate.
Every pen or ink is marked to recognize a surface energy value;
$32,34,36,40,42,44 \mathrm{mN} / \mathrm{m}$

Bad wettability on oily part because of the low surface energy

Good wettability without oil because of high surface energy

CleX: Clean Flexible

Modular Holder System for Cleaning and Stripping

CleX ${ }^{\circledR}$ for Shank Tools

Flexible holder system for cleaning and stripping of shank tools.

Advantages:

- Different tool-diameters can be held together
- Up to 150% more tools per foot print in comparison to conventional systems
- $\mathrm{CleX}^{\circledR}$ carriers can be handled even with tools loaded
- CleX ${ }^{\oplus}$ baskets are stackable
- Smart light design \rightarrow Low shadowing
- Minor contact surfaces \rightarrow Hardly cleaning spots
- Inclined surfaces \rightarrow Good water draining
- Stainless steel construction \rightarrow High temperature resistance
\rightarrow High durability

CleX ${ }^{\circledR}$ for Inserts

Flexible insert-holder for minimal handling at pre-, posttreatment and coating.

Advantages:

- Different insert-types can be held together
- For inserts with holes
- Without reloading, up to 500 inserts can sequentially run through all these processes:
- Cleaning
- Edge structuring by wet- / dry-microblasting
- Coating
- Polishing by wet-/ dry-microblasting

At wet- / dry-microblasting, all sides of the inserts are treated.
For inserts without holes the system can be used with the TongS system (see page 39) for coating only.

CleX ${ }^{\circledR}$ for Hobs

Flexible holder for cleaning and stripping of hobs.

Advantages:

- Hobs of different diameters and lengths can be held
- CleX ${ }^{\circledR}$ baskets are stackable

CleX: Clean Flexible

CleX ${ }^{\circledR}$ for Shank Tools

CleX ${ }^{\oplus}$ Basket	V111	V411	V1511
$330 \times 160 \mathrm{~mm}$	$2 \mathrm{pcs} /$ level	$4 \mathrm{pcs} /$ level	$8 \mathrm{pcs} /$ level

CleX ${ }^{\text {® }}$ Carrier	\varnothing-Shank mm	Tools/CleX ${ }^{\text {® }}$ Carrier	Tools/CleX ${ }^{\text {® }}$ Basket
CleX ${ }^{\text {® }}$-S -3	03	30	270
Clex ${ }^{-5}$ S 5	$\square 5$	26	234
Clex-S-6	ø6	24	168
Cle ${ }^{\text {® }}$-S-8	$\varnothing 8$	20	140
CleX -S-10	¢10	18	126
CleX ${ }^{\text {® }}$ - -12	012	16	112
CleX ${ }^{\text {® }}$-S-14	014	15	75
CleX - $-\mathrm{S}-16$	016	13	52
CleX ${ }^{\text {® }}$-S-18	018	12	48
CleX - S -20	020	11	44
CleX -S-25	¢25		36
CleX -S-32	032	7	28

Inch sizes are available on request

CleX ${ }^{\circledR}$-S-18 carrier for $ø 18 \mathrm{~mm}$

CleX ${ }^{\circledR}$ for Inserts

For satellites ø143×380mm	Positions	Optimized for Edge Length $\square \mathrm{mm}$	For minimum Insert-Hole ø mm
CleX ${ }^{\text {® }}$ - $-15 R$	15 with support ring	14	2.4
CleX ${ }^{\text {® }}-\mathrm{I}-15$	15	14	$\begin{aligned} & 3.7 \\ & 4.2 \\ & 5.2 \\ & 6.2 \end{aligned}$
CleX ${ }^{\text {® }} \mathrm{-l}$-18	18	$\begin{array}{r} 18 \times 8.5 \\ 9 \times 19.0 \\ 6 \times 29.5 \end{array}$	$\begin{aligned} & 3.7 \\ & 4.2 \\ & 5.2 \\ & 6.2 \end{aligned}$

CleX ${ }^{\circledR}$ for Hobs

CleX holders	Optimized for
CleX-H:	$1 \times ø 130$ $330 \times 160 \mathrm{~mm}$ $2 \times ø 65$ $3 \times ø 38$
CleX-H-XL: $330 \times 240 \mathrm{~mm}$	$1 \times ø 170$ $2 \times ø 108$ $3 \times ø 70$
CleX-V: $500 \times 500 \mathrm{~mm}$	flexible

Micro Structuring
 of Cutting Edges

Why Edge Preparation?

1. Main goal: Increasing the edge stability
a. Stable edge form:
to avoid the edge's chipping
b. Stable, low edge surface roughness: to decrease friction between tool and workpiece
c. Stable material:
e.g. to avoid cobalt leaching
2. Without edge preparation:

- low performance

3. Different work piece materials need:

- different edge preparation

4. Over the optimum edge preparation:

- performance drops down abruptly

5. Optimum edge preparation can:

- increase performance enormously

Typical Edge Images from High End Tool Manufacturers

General Evaluation of Edge Treatment Methods

Criteria / Features	Brushing	Drag Finishing	Dry Micro Blasting	Wet Micro Blasting	Magnet Finishing
Quality	¢ good	\oplus good	Omedium	¢ good	\oplus good
Constancy	¢ good	¢ good	Omedium	¢ good	¢ good
Flexibility	(1) high	Omedium	\oplus good	¢ good	Omedium
Productivity	¢ good	Omedium	Omedium	(1) high	¢ good
Price	(1) high	Omedium	Omedium	(1) high	(1) high
Standard machines available	(1)yes	(1)yes	(1)yes	(1)yes	(1)yes
Flute polishing possible	(1)yes	©yes	©yes	(1)yes	Olimited in depth
Droplet removal possible	(1)yes	(1) yes	(1)yes	(1)yes	© yes
Special features	Independent treatmen for all edges possible	Difficult for micro and very large tools	Residual materials on the surface	No residual material, high air consumption	Especially for micro tools, demagnetizing necessary

TLATIT吴

Microstructuring: Why and How?

Which Methods are Used and How Often?

Comparison of Different Micro Structuring Methods for Treatment of Cutting Tools

Tool	Brushing MET-6	Drag Finishing 4-Tools (3-rot.)	Dry blasting TR110	Wet blasting Compact II+	Magnet Finish MF 62CA
Drill	A1	C	B3	B2	A1
Tip only	A1	A1	A3	A2	A1
Tip and Flank	A1	A1	A3	A2	C
Step	A1	A1	A3	A2	C
Flute	C	C	C	C	
All individual					
Endmill	A1	C	C	C	A1
Flank only	A1	A1	A3	A2	A1
Tip and Flank	A1	A1	A3	A2	B1
Ball nose					
Insert	B1	B1	A3	A2	B1
With Bore	B1	C	A3	B2	C
Without Bore					
Hob	B1	B1	A3	A2	C
With Bore	B1	C	A3	A2	C
Without Bore	High flexibility	Smooth surface	Easy loading	Easy loading	Flexibility for shank tools
Biggest Advantage	Long set up	Manual clamping	Rough surface	Maintenance	Price
Biggest Limitation				Rer	

Possible:		Surface:		Recommendation:
A	yes	1	smooth	best
B	with difficulty	2	rough	alternative
C	no	3	very rough	not recommended

Applications

The Aim of Edge Preparation

1. Sharp edge: High internal stress of the PVD coating
2. Shortly after starting cutting, the coating breaks away
$\mathrm{CPO}_{\mathrm{R}}$: Coating's flaking on the tool's rake surface
$\mathrm{CPo}_{\mathrm{c}}$: Coating's flaking on the tool's clearance surface
3. Good coating -> $\mathrm{CPo}_{\mathrm{r}}$ and $\mathrm{CPo}_{\mathrm{c}}$ grow slowly
4. The aims of the edge preparation:

- Deburring the cutting edges
- Smooth transition between rake and clearance
- Reducing internal stress, but
- without making the edge blunt

Influence of Edge Preparation at Milling in High Alloyed Steel

Material: 1.2379-X155CrVMo12-1 - End mill: nACRo coated - d=10mm,
$z=4, a e=0.25 \times d-a p=1.5 \times d-v c=150 \mathrm{~m} / \mathrm{min}-f z=0.05 \mathrm{~mm} / \mathrm{z}-$ Measured: GFE, Schmalkalden, Germany

Drilling

as ground $\mathrm{R}=15 \mu \mathrm{~m}$ with edge honing with rounding

Influence of Corner Edge Preparation on the Performance of Drills

Work piece material: cold working steel - 1.2379-X155CrVMo12-1 - HRC22 - blind holes Solid carbide drills with nACo coating: $\mathrm{d}=5 \mathrm{~mm}-\mathrm{vc}=75 \mathrm{~m} / \mathrm{min}-\mathrm{fz}=0.15 \mathrm{~mm} / \mathrm{z}-\mathrm{ap}=15 \mathrm{~mm}-$ dry air coolant

Optimum Edge Rounding

Edge Preparation for Drills

Edge Preparation for End Mills

The optimal edge rounding values were elaborated in cooperation with GFE, Schmalkalden, Germany

Edge Preparation after Coating

- The edges are rounded after coating
- The coating is removed around the edge
- The edge is "set free"

Advantages of edge preparation after coating:

- Edge rounding and
- Droplets removing in one step
- Combined break outs of coating + carbide can be avoided
- Elimination of antenna effect

Disadvantages of edge preparation after coating:

- Interruption of coating structure on long surface line
- Immediately full and direct contact of cutting and work piece material
- Lower heat and chemical insulation
- Low coating thickness near to the edge
- Full coating structure begins far from cutting edge

As coated

Edges are "set free" treated after coating

- Bigger edge radius (e.g. for roughing) results in larger surfaces without coating
- Gives the impression of bad coating

Brushing

For Pre- and Post-Treatment of Cutting Tool Edges

For flexible use
Source: MET, Cleveland, USA

Brushing with 2 axis machine

Use for series production
Source: Gerber, Lyss, Switzerland

The 5 axes

Tool:

1. X-axis: Horizontal move
2. A-axis: Rotation around tools, rotating axis Brush:
3. Y-axis: Transverse axis (offset)
4. Z-axis: Vertical move (setting to tool)
5. C-axis: Swivel axis (around Z)

Advantages

- Flexibility
- Individual and independent edge treatment for
- rake face / clearance
- chisel edge
- corner chamfer
- step drill edges
- margin
- Different (dedicated) edge treatment geometries
- round
- waterfall
- reverse waterfall (trumpet)
- Flute detection and tool orientation
- Explicit flute polishing
- Optional magazine for automatic loading

Limitations

- First setup for a new tool requires more time

Carbide step drill after grinding

Modular software routines and tool holders

For:

- drills, step drills
- reamers
- end mills, ball nose end mills
- hobs
- inserts
- taps

ТนАтіт:

Microblasting

Working Principle and Results

Comparison of Wet and Dry Microblasting

Comparison	WET	DRY
Surface roughness	$\mathrm{Sa}=0.05 \mu \mathrm{~m}-\mathrm{Sz}=0.32 \mu \mathrm{~m}$ slightly shiny surface	$\mathrm{Sa}=0.11 \mu \mathrm{~m}-\mathrm{Sz}=1.14 \mu \mathrm{~m}$
Rest material after blasting	Danger of cobalt leaching because of water	Smearing of residual material
Coating adhesion	HF1	HF1
Edge rounding	Better to control	Difficult to control
Grain size	Mesh $320(50 \mu \mathrm{~m})$ coarse, for edge round Mesh $400(37 \mu \mathrm{~m})$ middle, for surface Mesh $500(30 \mu \mathrm{~m})$ fine, for polishing	ding tivation
Typical micro blasting time [min] for hob $\varnothing 80 \mathrm{~mm}-\mathrm{R}=10 \mu \mathrm{~m}$	3	6
Main features	- Pre cleaning not needed - Drying after blasting needed - Difficult cleaning at interrupted work - Higher price - huge air consumption	- Pre cleaning needed - No drying needed after blasting - Easy handling at interrupted work - Lower price - high air consumption

Drag Grinding

Working Principle and Results

The tools are clamped in a planetary drive. The tools are dragged in the process media. The auto rotation of the tools guarantees a homogeneous edge rounding of all
cutting edges.

Advantages

- Reliable process
- High reproducibility
- Flute polishing

Limitations

- Inflexible clamping system
- Clamping head must be full for homogeneous treatment
- Relatively long process time

Source: OTEC, Straubenhardt, Germany

ТนАтіт:

Stream Grinding

Extending loading carriage can be set up directly beside the wall

3-jaw gripper for Ø 3 - 20 mm with automatic \emptyset recognition max. length 200 mm

Parallel gripper with swivel unit for embracing the different \emptyset in different prisms

Sensor for checking immersion depth and tool breakage

Container 1: With granulate for smoothing

Container 2:
Edge honing or polishing

- Interchangeable locked pallets $\varnothing 3-20 \mathrm{~mm}$
- Automatic switching to the next pallet even at partly loaded pallets or at tool quantity of 1
- Simple programming over the Fanuc robot panel
- Adjustable speed, duration and immersion depth per pallet
- Infinitely variable controlled drive right / left
- Processing time: ~ 2 min / tool
- Automatic edge rounding and polishing $\sim 2 \mathrm{~min} /$ tools

Options:

- Special pallets
- Special grippers
- Special software

Pulsing Finish by OTEC

The SF stream finishing technology offers deburring, rounding and smoothing in a single processing stage.It can optionally be equipped with pulse finishing. It means the rotating direction of the substrate will be periodacally changed.Depending on the requirement profile, the machines can be pre-equipped automatic loading or optionally equipped with integrated automatic loading. Typical applications are the treatment of machine components with complex geometries such as taps, dies and fuel injectors.

Magnet Finish

Working Principle and Results

The magnetfinish process bases on two rotating disks with an adhered magnetic abrasive. This abrasive sticks on the flat side of the magnetic disks and operates as a thick elastic mass adapting to the shape of the tool. Rotation results in a movement of the abrasive mass against the tool surface. Due to the high velocity of this movement, the surface treatment is very intense.

Advantages

- Easy automatic processing
- Good for small quantities, no dummies needed
- Short process time
- Cooling channels on drills stay clean
- Deburring possible without edge rounding
- Consistent quality over tool length
- High repeatability due to constant abrasivity

Limitations

- Tool range: 0.1 - 25 mm
- Flute on drill polishing up the $\emptyset 12 \mathrm{~mm}$
- After magnet finishing, demagnetization of the tools

Source: Magnetfinish GmbH, Switzerland

Process Media

Name	Edge rounding	Polishing
Middle Grain Abrasive	HSS	Standard Coatings
Big Grain Abrasive	Carbide	
Nano Abrasive	Carbide, PCD, CBN	Superhard and DLC coatings

Edge rounding of carbide drill $\mathrm{d}=2.5 \mathrm{~mm}$
with nano abrasive powder

ГИАТіт:

Influence of the Edge Shape

Importance of the Geometric Edge Parameters

K-Factor and its Influence on the Application

Edge Preparation Increases Tool Performance even for WOOD CUTTERS

Optical 3D Measurement of Cutting Edges

Two different methods for contactless and destruction-free measurement of cutting edges.

Alicona Measuring-Systems

Focus-Variation:
A surface-based process with high-resolution combines functionalities of a roughness and 3D-coordinate system. The applied technology provides high stability against extraneous lights and vibrations.

Alicona EdgelMaster with special holder from PLATIT Source: Alicona, Graz, Austria

LMI-GFM Measuring-Systems

Stripe-light-projection:
Aligned, sectional planes of light are projected on the cutting edge. These are captured by a CCD camera and compared with the emitted light to calculate the edge radii.

LMI MicroCAD
Source: LMI, Vancouver, Canada

$2 \times 2 \times 25 \mathrm{~mm}^{3 *}$	Measuring Volume	$1.6 \times 1.2 \times 0.8 \mathrm{~mm}^{3 *}$
$3 \mu \mathrm{~m}^{*}$	Min. Edge Radius	$5 \mu \mathrm{~m}$
Yes	K-Factor	Yes
Ra, Rz, Rq, Rp, Rv	Chipping	Ra
Simple and Repeatable	Tool Positioning	Limited
Wedge-, Clearance-, and Rake-Angle, Phase-Length etc.	Tool Geometry	No
Possible	User-Definied Parameters	No
Automatic	Break-Outs and Wear	No
Yes	Shape Deviation	Yes
Ra, Rz, etc. + Sa, Sz, etc.	Surface Roughness	Not possible

*depending on lens

Phase-Length

ГИАтіт:

Quality Control PQCS

Image Processing System

- Microscopical analysis of test plates and coated tools
- Thickness measurement by Calotest on test place and real tools
- Adhesion evaluation using Rockwell test

Platit Quality Control System (POCS)

- Easy user interface
- Step by step "Coating Report" generation
- Automatic database entries after
"Coating Report" generation and links to:
- Batch photo
- Calo image
- Rockwell image
- Coating Report
- Report no. (with link to report)
- Tester, Date, Coating unit
- Batch no. (with link to batch photo)
- Measured substrate, substrate material
- Coating
- Hardness before and after coating [HRC]
- Thickness $[\mu \mathrm{m}]$ (with link to Calo image)
- Adhesion class [HF] (with link to Rockwell image)
- Customer, contact
- 5 user defined text fields e.g.
- pretreatment
- posttreatment
- used holders
- ...
- 5 user defined number fields e.g.
- positions of special substrates on carousel
- ...

Scratch Tester

Scratch tester with constant loads for testing in production (go or not go) Source: BAQ, Braunschweig, Germany

Scratch tester for lab analysis Source: Anton Paar, Graz, Austria

Method

- Linear scratching of an indenter with an applied load to characterize the coating adhesion
- The diamond of the scratch test is the same as the diamond of a Rockwell indenter
- The scratch tester allows three ways to apply the load:

Limitations

- Analysis of the scratch on an external microscope
- Flat surface required
- Length of scratch:
$0-30 \mathrm{~mm}$
- Load range:
$0-200 \mathrm{~N}$ (for hard coatings)

X-Ray Spectrometer

Advantages

- Non-destructive coating thickness measurement
- Non-destructive composition measurement
- Non-destructive cobalt leaching measurement

Limitations

- AI (element 13) and Si (element 14) detectable
- Measuring chamber size ($\mathrm{L} \times \mathrm{W} \times \mathrm{H}$): $360 \times 380 \times 240 \mathrm{~mm}$

Method

- X-rays excite the substrate to emit X-ray fluorescence
- The analysis is focused on a small spot of $0.3 \mu \mathrm{~m}$
- The penetration depth is about 40-50 $\mu \mathrm{m}$ (for HSS)

ТนАтіт:

Surface Analysis by AFM

Method

- Atomic Force Microscopy (AFM)
- Static and dynamic measuring modes
- Attached to optical microscope (e.g. to the PLATIT Quality Control System POCS) or as a stand-alone equipment

Manufacturer: Nanosurf AG, Liestal, Switzerland

Advantages

- High-resolution 3D data of the coated surface
- Integrates seamlessly with your optical analysis
- Easy to use and robust scanner
- Automated reports and sample acceptance/rejection rules

Defect Analysis on Hard Coated Surface by AFM

Limitations

- Max. scan range (XY): $70 / 110 \mu \mathrm{~m}$
- Max. height range (Z): $22 \mu \mathrm{~m}$
- Resolution (XY / Z): $1.7 \mathrm{~nm} / 0.34 \mathrm{~nm}$
- Typical noise levels: 0.4 nm (0.55 nm max.)

Typical Surface Structures and Roughnesses Measured by AFM

After grinding

$$
\mathrm{Sa}=0.019 \mu \mathrm{~m}-\mathrm{Sz}=0.28 \mu \mathrm{~m}
$$

After (grinding + wetblasting)

$$
\mathrm{Sa}=0.076 \mu \mathrm{~m}-\mathrm{Sz}=0.76 \mu \mathrm{~m}
$$

After EDM

$\mathrm{Sa}=0.073 \mu \mathrm{~m}-\mathrm{Sz}=0.86 \mu \mathrm{~m}$

After (AICrN coating + wetblasting)

$\mathrm{Sa}=0.039 \mu \mathrm{~m}-\mathrm{Sz}=0.10 \mu \mathrm{~m}$

Additional Equipment for Handling

FL380 Fork Lift

Fork lift for easy transportation of loaded carousels and cathodes to and from the coating unit. Compatible with the machines of the π series.

Cathode Tables

For correct vertical holding and stocking of LARC and CERC cathodes.

Taking out the π^{1571} cathode for exchange from the wooden box

 -
$3+1$ tower
$4+4$ tower
for π^{1507} cathodes

Tool Inspection Equipment

- Tool inspection and measuring before and after coating
- Automatic edge identification
- Automatic measuring processes according to tool geometry
- Wear measurements at tool testing
- Complete tool logs

for Extended PVD Production

Cooling Boxes

CB411 and CB1011 For π^{6077}, π^{1577}, and $P L^{7071}$
Safe cooling of the tools immediately after coating. To accelerate the cooling and to move away the dust and coating rests. The tools and the carousels are blasted by compressed air.

Polishing for Extreme Shiny Surfaces

The PolishPeen 770 equipment is a vacuum blasting cabin with an injector in the blasting pistol. A special media is used as polishing powder.
The operation enables mirror finishing for irregular shapes of tools, punches, dies, pins and small-sized molds.

[^1]

Brazed tools in the compound, machine components, mold and dies manufactured from simplier steels can contain elements their outgassing would damage the coating chamber. The evaporate pressures of the most «dangerous» elements, zinc, and cadmium, are higher than the coating process pressure. The cadmium and zinc will begin to evaporate at very low temperatures during the deposition process. This can lead to voids in the brazed joint, and cause poor adhesion of the coating.
Therefore, this kind of substrates should be outgassed in a separated outgassing oven before coating in a PVD unit. The outgassing oven heat-treat the substrates at higher temperature than the highest temperature will be in the coating chamber. The outgassed materials are collected on the cold trap of the door, which can be cleaned mechanically after the outgassing process.

Oilfree Mini Steam Jet

Steam jet

- for cleaning of subtrates surfaces
- especially the internal cooling ducts of rotating shank tools

Equipment Layout

TLTTT吴

Connection Data

Name	Description	Dimension WxDxHxRH [mm]	Weight [kg]	Power supply [V/Hz]	Electrical connection [kVA]	Fuse [A]	Water [bar]	Air [bar]	Gas
π^{1517}	Coating unit	$4882 \times 2181 \times 3354 \times 4200$	5000	3x400 / 50-60	100	200	2-4	8	$\mathrm{N}_{2}, \mathrm{Ar}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{He}$
PL ${ }^{1071}$	Coating unit	$3880 \times 1950 \times 2220$		3x400/50-60	90	200	2-4	8	$\mathrm{N}_{2}, \mathrm{Ar}_{2} \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{He}$
C1511	Chiller π^{7517}	$1000 \times 1000 \times 2055$	370	3x400 / 50-60	20.7	40	3-6	-	-
01011	Chiller PLºver	$1000 \times 1000 \times 2055$	370	3x400 / 50-60	20.7	40	3-6	-	-
$\pi^{\text {covplus }}$	Coating unit	$2730 \times 1776 \times 2215 \times 3200$	2650	3x400/50-60	110	160	2-4	-	$\mathrm{N}_{2}, \mathrm{Ar}^{2} \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{He}$
C411	Chiller for $\pi^{\text {c/212 }}$	$1680 \times 790 \times 1410$	750	$3 \times 400 / 50$	20.5	40	-	-	-
C411	Chiller for $\pi^{\text {c/v7 }}$	$1680 \times 790 \times 1410$	750	$3 \times 460 / 60$	20.5	40	-	-	-
$\pi^{\text {p17PLus }}$	Coating unit	$1881 \times 1185 \times 2213 \times 3200$	1400	3x400/50-60	42	100	2-4	-	$\mathrm{N}_{2}, \mathrm{Ar}^{2}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{He}$
C 111	Chiller for $\pi^{\text {p72 }}$	$1230 \times 790 \times 1410$	600	$3 \times 400 / 50$	12.3	16	-	-	-
C111	Chiller for $\pi^{\text {p72 }}$	$1230 \times 790 \times 1410$	600	$3 \times 460 / 60$	12.3	16	-	-	-
FL381	Fork lift	$841 \times 1330 \times 1947$	400	115-230/50-60	0.75	10	-	-	-
V111	Cleaning unit	$1570 \times 1370 \times 2410$	1200	3x400/50-60	10	16	3-4	6-8	N_{2}
V411	Cleaning unit	$1830 \times 1980 \times 2500$	1650	3x400/50-60	24	40	3-4	6-8	$\mathrm{N}_{2}, \mathrm{CO}_{2}$
V1511	Cleaning unit	$4200 \times 1800 \times 2450$	4500	$3 \times 400 / 50-60$	58	100	3-6	6-8	N_{2}
DE411	Degasing oven	$1950 \times 1500 \times 2250$	1400	3x400/50-60	28	40	2-3	6-8	Ar, He
ST-40 HM	Stripping unit	$625 \times 825 \times 1200$	127	230/50-60	1.1	16	-	-	-
ST-40 HSS	Stripping unit	$625 \times 825 \times 1200$	88	230/50-60	2.5	16	2-6	6-8	-
DF-4 HD	Drag finish unit	$1150 \times 970 \times 2260$	370	3x400/50-60	7.5	32	-	-	-
115N	Dry sand blasting unit	$1315 \times 1200 \times 1885$	360	230/50-60	0.8	16	-	6-10	-
TR110	Dry micro blast unit	$2100 \times 1450 \times 2430$	480	$3 \times 400 / 50-60$	2	16	-	3-10	-
C-II	Wet micro blast unit	$2100 \times 2050 \times 2950$	1200	3x400/50-60	7	32	2-4	2-5	-
CT-20	Stripping unit	$1860 \times 822 \times 1460$	350	3x400/50-60	6.5	16	2-6	3-6	-
PP770	Polish blast unit	$845 \times 840 \times 1740$	205	230/50-60	0.15	10	-	3-10	-
POCS	Microscope + PC	$1500 \times 650 \times 800$	40	230 / 50-60	0.4	10	-	-	-

The data are approximate values only. For detailed data see PLATIT's periphery handbook.

In - House coating center of eft-Pannon, Budaörs, Hungary

Coating Generations and their Structures

1. Generation

Monoblock Structure Without Adhesion Layer

The monoblock structure without adhesion layer can be produced by the fastest, most economical process. All targets are the same and run during the whole deposition process. Example coatings TiN, CrN

2. Generation

Monoblock

Especially at high aluminum content the monoblock coating should be started with adhesion layer TiN, CrN. Typical coating: AITiN.

Gradient (G)

At gradient structure the ratio of components (e.g. C) will continuosly be changed. Typical coating: TiAICN ${ }^{2}$
3. Generation: ThipleCoatings ${ }^{\text {e }}$

Multilayer (ML) Nanolayer (NL)
Period > $20 \mathrm{~nm} \quad$ Period $<20 \mathrm{~nm}$

Multilayer structures have higher toughness at lower hardness than comparable monoblock coatings. The "sandwich" structure absorbs the cracks by the sublayers. Typical coating: AITiN ${ }^{2}$

Nanolayer is the conventional structure for the so called Nanocoatings. It is a finer version of multilayers with a period of $<20 \mathrm{~nm}$. Typical coating: CrTiN ${ }^{2}$

Nanocomposite (NC)

At depositing Nanocomposites the hard nanocrystalline grains (TiAIN or AICrN) become embedded in an amorphous SiNMatrix. Typical coating: nACo^{2}
4. Generation: QUACICoatings ${ }^{\text {® }}$

TLNTIT®

Comparison of Coating Structures

By deposition of very different kinds of materials, the components (like $\mathrm{Ti}, \mathrm{Cr}, \mathrm{Al}$ in the first group, and Si in the other) are not mixed completely, and 2 phases are created. The nanocrystalline TiAlN- or AlCrN-grains become embedded in the amorphous $\mathrm{Si}_{3} \mathrm{~N}_{4}$-matrix and the nanocomposite structure develops.

Silicon increases the toughness and decreases the internal residual stress of the coating. The increasing of the hardness is generated by the structure only, the SiN matrix enwraps the hard grains and avoids growing of their size.

No Silicon: AICrN

- Si addition changes microstructure from columnar to isotropic
- Effect is analog to the Ti-based system
- In TiAIN/SiN less Si is needed to reach glassy structure

Hardness Increase through Nanocomposites

 hardness

Source: J. Patscheider, EMPA, CH

Low Silicon: AICrN/SiN

High Silicon:
AITiN/SiN: nACo ${ }^{\circledR}$

High Silicon: AICrN/SiN

The beach comparison illustrates the hardness increase made possible by using a nanocomposite structure. Usually, the foot sinks into dry sand. In wet sand, the foot does not sink in or not as far, because the space between sand grains is filled with water. The surface has a higher resistance, so it is harder.

PLATITs Main Coatings

Coating Properties

*LT: Low temperature processes possible. VIc ${ }^{\text {® }}$: DLC (Diamond Like Coating)
The given physical values may vary at different coating structures (gradient, mono-, multi- and nanolayers).
\#: In development.
$\xrightarrow[\sim]{\sim}$: The toplayer DLC2 coatings are deposited by PECVD method (Plasma Enhanced Chemical Vapor Deposition).
HS: HIPIMS (High Performance Impuls Magnetron Sputtering)

Main Application Fields

		Cutting	Forming	Machine Component
1	TiN	universal use	molds and dies	universal use, also for decorative purposes
2	TiCN-grey	tapping, milling for HSS and HM with coolant	molds and dies, punching	
3	TiAIN	drilling and universal use, also for weak machines		
4	AITiN	milling, hobbing, high performance machining, also dry		
5	TiAICN	sawing, milling, tapping, also with MOL	molds and dies, punching	
6	CrN	cutting wood, light metals like copper, and AI alloys with low Si	molds and dies	
7	CrTiN	cutting and forming high alloyed materials with HSS tools	molds and dies with higher hardness, extrusion	tool holders, corrosion prot., medical tools
8	ZrN	machining aluminum, magnesium, titanium alloys		for decorative purposes
9	AICrN	dry milling, hobbing, sawing	fine blanking, punching	
10	ALL ${ }^{\text {3® }}$	universal; wet and dry cutting	molds and dies, stamping, deep drawing, bending, fine punching	
11	ALL ${ }^{\text {® }}$	universal, cutting of abrasive materials	molds and dies, forging, fine blanking	
12	nACo ${ }^{\text {® }}$	turning, hard machining on stable machine, drilling, reaming, grooving	punching, fine blanking	
13	nACRo ${ }^{\text {® }}$	tough wet cutting of difficult materials (superalloys), micro tools	friction welding, extrusion, die casting	
14	TiXCo ${ }^{\text {® }}$	for superhard cutting		
15	BorAC -ARC	for milling, hobbing	fine blanking, punching	
16	nACoX ${ }^{\text {® }}$	HSC dry turning and milling		for components with highly abrasive load
17	X-V/ce	cutting light metals, wood	mold and dies with low friction coefficient	car parts, blisks, sawing parts, copper parts
18	X-SCILVIc ${ }^{\oplus}$	cutting non-ferrous materials, if extreme low roughness on tools required	molds and dies if extremely low roughness required on the surface	car parts, blisks, sawing parts, copper patts, if extremely low roughness required
19	WC/C	reducing friction at run-in	molds and dies if extremely low roughness required on the surface	car parts, blisks, sawing parts, copper parts, if extremely low roughness required
20	X-SCIL ${ }^{\text {® }}$	tapping, thread forming, gun drilling, reaming		
21	TiB_{2}	cutting light metals especially aluminum with low Si	mold and dies with easy release	clamping elements with low friction and high wear resistance
22	ta:C	cutting non ferrous materials, composite materials, graphite, microtools	for forming tools with high wear load	for components with high wear load
23	BorAC-LACS ${ }^{\text {® }}$	dry milling, hobbing, sawing, reaming	fine blanking, punching	
24	BorCO-LACS ${ }^{\text {® }}$	universal, especially for hard machining		
25	AICrN-LACS ${ }^{\text {® }}$	micro machining	fine blanking, punching	

The main application fields of the coating components:

- Ti: general component, for wet machining, drilling, turning
- C: for forming and cutting of sticky materials at low temperature, for machine components as DLC
- Al: for universal use, for abrasive materials, for dry machining
- Cr: for abrasive and high alloyed materials, also at dry machining, for wood
- Si: general and hard machining as Nanocomposites for rigid machines, for finishing
- B: universal use of coating with low internal stress
- 0 : for high temperature machining, for turning, milling
- C: increasing hardness with low friction coefficient, limited heat resistance

Coating Guide

Coating Usage Recommendations

	Cutting				Fine Blanking Punching Stamping	Chipless Forming		
	Turning	Milling - Hobbing Gear Cutting Sawing	Drilling Reaming Broaching	Tapping		Injection molding	Forming Deep Drawing Extrusion	哭
Steels unalloyed < $1000 \mathrm{~N} / \mathrm{mm}^{2}$	\square nACo \square AITiN	$\begin{aligned} & \mathrm{ALL}^{3 ®} \\ & \square \mathrm{nACRo} \\ & \end{aligned}$	$\begin{aligned} & \square \text { nACo }{ }^{\oplus} \\ & \text { AITiN } \end{aligned}$	$\begin{aligned} & \text { ALL3 } \\ & \square \text { SCILVIc }^{2 ®} \end{aligned}$	\square AICrN \square nACVIc $^{\oplus}$	$\begin{aligned} & \square \text { nACVIc }^{\oplus} \\ & \equiv \text { CrTiN } \end{aligned}$		
Steels unalloyed > $1000 \mathrm{~N} / \mathrm{mm}^{2}$	nACo ${ }^{\circ}$ \square AItin		$\begin{aligned} & \square \text { nACo }{ }^{\oplus} \\ & \text { AITiN } \end{aligned}$	$\begin{aligned} & \mathrm{ALL}^{3 ®} \\ & \square \text { SCILVIc }^{2 ®} \end{aligned}$	$\square \mathrm{AICrN}$ ALL^{46}	$\begin{aligned} & \square \text { nACVIc }^{\circledR} \\ & \square \mathrm{CrN} \end{aligned}$		
Steels hardened < 55 HRC	$\square \mathrm{nACo}^{\oplus}$ $\square \mathrm{TiXCo}$ $\square{ }^{3 \ominus}$	$\begin{gathered} \mathrm{nACo}^{\oplus} \\ \square \mathrm{TiXCo} \end{gathered}$	$\square \mathrm{nACo}$ $\square \mathrm{TiXCo}$ ${ }^{3 \ominus}$	\square nACo $^{\oplus}$ \square SCILVIc $^{2 \oplus}$	$\square \mathrm{AICrN}$ ALL^{48}			
Steels hardened >55 HRC		$\begin{aligned} & \square \mathrm{TiXCo}^{4{ }^{\circledR}} \\ & \square \mathrm{nACo} \end{aligned}$	$\square \mathrm{TiXCo}^{3{ }^{\circ}}$		AICrN $\square \mathrm{TiXC}$ A^{40}			
Stainless steel	nACo nACoX	$\begin{aligned} & \mathrm{ALL}^{4 ®} \\ & \square \mathrm{nACRo}^{\circ} \end{aligned}$	$\square \mathrm{nACo}$ $\square \mathrm{TiXCo}$ ${ }^{3 \ominus}$	$\begin{aligned} & \text { ALLL }^{48} \\ & \square \text { SCILVIC }^{2 ®} \end{aligned}$	$\begin{aligned} & \text { ALL }{ }^{4 \oplus-} \text {-Tribo } \\ & \pm \text { CrTi-VIc }^{28} \end{aligned}$	$\begin{aligned} & \text { ALL }{ }^{\text {Bio-Tribo }} \\ & \text { CrTi-VIc }{ }^{28} \end{aligned}$		
Superalloys Ni-based	$\begin{gathered} \square \mathrm{nACoX}{ }^{\circledR} \\ \square \mathrm{nACo} \end{gathered}$	$\begin{aligned} & \mathrm{nACoX}^{\circledR} \\ & \mathrm{ALL}^{4 ®} \end{aligned}$	$\square \mathrm{TiXCo}^{3 \ominus}{ }^{\text {nen }}$	\square nACVIc $^{\oplus}$ \square SCILVIc $^{2 ®}$	$\begin{aligned} & \square \text { nACVIc } \\ & \text { CrTi-VIc }^{28} \end{aligned}$	$\begin{aligned} & \triangle \text { nACVIc }^{\oplus} \\ & \triangle \text { CrTi-VIc }^{2 ®} \end{aligned}$	$\begin{aligned} & \square \text { nACVIc }^{\circledR} \\ & \triangle \text { CrTi-VIc }^{28} \end{aligned}$	
Superalloys Ti-based	$\begin{aligned} & \mathrm{ALL}^{3 \ominus} \\ & \square \mathrm{nACo}^{\circ} \end{aligned}$		$\begin{aligned} & \text { ALL4® } \\ & \text { nACo } \\ & \text { ne } \end{aligned}$	\triangle CrTi-VIc 20 \square SCILVIc 20	$\begin{aligned} & \square \text { nACVIc } \\ & \text { CrTi-VIc }{ }^{2 \oplus} \end{aligned}$	$\begin{aligned} & \square \text { nACVIc } \\ & \triangle \text { CrTi-VIc }^{20} \end{aligned}$	$\begin{aligned} & \square \text { nACVIc } \\ & \triangle \text { CrTi-VIc }^{28} \end{aligned}$	$\stackrel{0}{3}$
Cast iron	\square nACo ${ }^{\circ}$	nACo \square AITiN	nACo \square AITiN	$\square \mathrm{nACRo}^{\circ}$ ALL^{48}				
Aluminum $\mathrm{Si}>\mathbf{1 2 \%}$	$\begin{aligned} & \text { nACRo }{ }^{\circ} \\ & \text { TiCN } \end{aligned}$	$\begin{aligned} & \text { nACRo }{ }^{\oplus} \\ & \text { TiCN } \end{aligned}$	\square nACRo \square TiCN	$\begin{aligned} & \text { nACRo }{ }^{\circ} \\ & \text { SCILVIC }^{2 ®} \end{aligned}$	\square AICrN ALLL	\square nACRo $\square \mathrm{TiCN}$	$\begin{gathered} \square \text { nACVIc } \\ \pm \text { CrTi-VIc }^{2 ®} \end{gathered}$	
Aluminum Si $<\mathbf{1 2 \%}$	$\square \mathrm{TiB}_{2}$ $\square \mathrm{ZrN}$	$\begin{aligned} & \square \mathrm{TiB}_{2} \\ & \square \mathrm{ZrN} \end{aligned}$	$\square \mathrm{TiB}_{2}$ $\square \mathrm{ZrN}$	$\square \mathrm{TiB}_{2}$ $\square \mathrm{ZrN}$	$\square \mathrm{TiB}_{2}$ $\square \mathrm{ZrN}$	$\square \mathrm{TiB}_{2}$ $\square \mathrm{ZNN}$	$\square \mathrm{TiB}_{2}$ $\square \mathrm{ZrN}$	
Copper	$\begin{aligned} & \square \text { ta:C } \\ & \square \mathrm{CrN} \end{aligned}$	$\begin{aligned} & \text { B ta:C } \\ & \square \mathrm{CrN} \end{aligned}$	$\begin{aligned} & \text { B ta:C } \\ & \square \mathrm{CrN} \end{aligned}$	$\begin{aligned} & \text { ta:C } \\ & \square \mathrm{CrN} \end{aligned}$	$\begin{aligned} & \square \mathrm{ta} \mathrm{C} \\ & \square \mathrm{CrN} \end{aligned}$	$\begin{aligned} & \text { B ta: } \\ & \square \mathrm{CrN} \end{aligned}$	$\begin{aligned} & \text { B ta:C } \\ & \square \mathrm{CrN} \end{aligned}$	
Bronze, Brass, Plastic	$\square \text { TiCN }$	\square TiCN	$\square \text { TiCN }$	$\begin{aligned} & \square \text { SCILVIc }^{20} \\ & \text { ta:C } \end{aligned}$	$\square \text { TiCN }$	$\square \text { TiCN }$	$\square \text { TiCN }$	
Graphite	Ta ta: TiXCo ${ }^{\circ}$	$\begin{aligned} & \text { W ta:C } \\ & \square \text { TiXCo } \end{aligned}$	$\begin{aligned} & \text { X ta:C } \\ & \square \text { TiXCo } \end{aligned}$	$\begin{aligned} & \mathrm{Tta}: \mathrm{C}^{-1} \\ & \square \mathrm{TiXCo} \end{aligned}$				
Carbon-fibre composites	$\begin{aligned} & \square \text { ta:C } \\ & \square \text { TiXCo } \end{aligned}$	$\begin{aligned} & \text { W ta:C } \\ & \square \text { TiXCo } \end{aligned}$	$\begin{aligned} & \mathrm{x} \text { ta:C } \\ & \square \mathrm{TiXCo} \end{aligned}$	$\begin{aligned} & \mathrm{xta}: \mathrm{C}^{\circ} \\ & \square \mathrm{TiXCo} \end{aligned}$				
Wood	CROMTIVIC ${ }^{\text {® }}$ nACVIc ${ }^{\text {® }}$	CROMTIVIC ${ }^{\text {® }}$ nACVIc ${ }^{\text {® }}$	CROMTIVIC ${ }^{\text {® }}$ nACVIc ${ }^{\text {® }}$	$\begin{aligned} & \triangle \text { CROMTIVIc }^{\oplus} \\ & \square \text { nACVIc }^{\oplus} \end{aligned}$				
Primary Recommendation: If available, use this coating for the application.			coating A coating B Alternate Recommendation: Use this coating when the primary recommendation is not available.					

- Thickness and structure can and should be different according to the different application processes even for the same coating.
- If the exponent $\mathrm{x}\left(\right.$ coating $\left.^{\mathrm{x}}\right)$ is not defined, the available machine determines the coating.

The Coating Spectrum for the Standard Machines

Coating ${ }^{\mathrm{x}}$: The exponent x defines the generation of the coating (according to page 76):

1: $1^{\text {st }}$ generation coating: Monobblock coating; the adhesion layer is the same like the whole coating (e.g. TiN ${ }^{1}$)
2: $2^{\text {nd }}$ generation coating $=$ Adhesion layer + Core layer (e.g. AlTiN2)
3: TripleCoatings: $3^{\text {rd }}$ generation coatings $=$ Adhesion layer + Core layer + Toplayer (e.g. nACo ${ }^{3}$)
4: QuadCoatings: $4^{\text {th }}$ generation coating $=$ TripleCoating + Additional layerblock (e.g. TiXCo ${ }^{4}$)
If there is no exponent to the coating, the coating family is assumed. The achievable generation depends on the available machine.
\#: In development.
HS: HIPIMS (High Performance Impuls Sputtering)

Coating Types
 Conventional Coatings
 The machine symbols show which machine the coating can be deposited by.

The coatable stoichiometries can be different depending on the machine used.

The general-purpose coating for:

- cutting
- forming, injection molding
- tribological applications (for machine components)
- available process with 1,2 or 4 cathodes

Universal coatings
Monoblock (MB) and gradient (G): for stable cut Multilayer (ML): for interrupted cut

\%-Ratio AI/Ti:

TiAIN-F (ML): $\sim 50 / 50$
TiAIN-G: $\quad \sim 50 / 50$
TiAIN-MB: $\quad \sim 50 / 50$

AITIN

Universal high performance coatings
Monoblock (MB) and gradient (G): for stable cut Multilayer (ML): for interrupted cut

\%-Ratio AI/Ti:

AITIN-ML: $\quad \geq 60 / 40$
AITiN-G: $\quad \geq 60 / 40$
AITiN-T (MB): $\geq 60 / 40$
AITiN-C (MB): $\geq 67 / 33$

Conventional carbonitride coating (grey):

- for milling and tapping
- for stamping, punching and forming

Gradient coating for universal use:

- with high hardness
- at low friction coefficient
- for milling and tapping
- for stamping and punching

and their Main Applications Fields

X-VIc: a:C:H:Me; metal doped Carbon Based Diamond Like Coating (CBC) X-VIc ${ }^{2 \pi}$: a:C:H:Si metal free silicon doped Carbon Based Diamond Like Coating (DLC²)

The standard coating for non-cutting applications

- for molds and dies
- for machine parts
- for optimal release of molds and dies
- low deposition temperature possible (above $220{ }^{\circ} \mathrm{C}$)
- CrCN (Tribo) can be used as a top layer on all coating as a tribological lubricant

Multilayer coating for universal use

- improved economy by using Ti
- outstanding chemical resistance and toughness due to fine multilayer structure
- for molds, dies and machine parts
- for HSS cutting tools in high alloyed materials
- lower deposition temperature possible

CBC ${ }^{\dagger} D L C^{2}$
 Hard lubricant

A/I coatings $+\mathrm{VIc}^{2}{ }^{2}$

Duplex coating with nanogradient structure Basic layer + DLC top layer

- for components
- to avoid built-up edges
- for machining aluminum and titanium alloys
- for forming applications with optimum release

Monolayer coating with Ti- or Cr- based adhesion layer

- effectively reduces the built-up edges when machining aluminum and titanium alloys
- for medical application
- for forming application with optimum release
- fancy color
- also available as top layer as ZrCN

Multi Components Coatings (T, Al, Cr, B, C, B) without Silicon

The machine symbols show which machine the coating can be deposited by.
The coatable stoichiometries can be different depending on the machine used

Nanocomposite Coatings with Silicon

X-VIc ${ }^{\circledR}$: a:C:H:Me; metal doped Carbon Based Diamond Like Coating (CBC)
The CBC and DLC ${ }^{2}$ coatings can be deposited as top layers only.
X-VIc ${ }^{2 ®}$: a:C:H:Si metal free silicon doped Carbon Based Diamond Like Coating (DLC²)

Nanocomposite coating based on Ti and silicon Stoichiometry:
nACo ${ }^{3 \oplus}$: TiN - AITiN - AITiN/SiN
nACo ${ }^{4}$: TiN - AITiN-G - AITIN-NL - AITiN/SiN TiAlSiN: TiN / TiAlSiN

- for drilling, turning, hard milling
- also available with decorative blue top layer

Nanocomposite coating based on Cr and silicon
Stoichiometry:
nACRo ${ }^{3}$: CrN - AlTiCrN - AICrN/SiN
nACRo4: CrN - AICrN-G - AICrN-NL - AICrN/SiN

- for "difficult to cut" materials, highly alloyed steels, super alloys
- for injection molding

Nanocomposite coating with high silicon content Stoichiometry:
TiXCo ${ }^{3}$: TiN - nACo - TiN/SiN
TiXCo ${ }^{4}$: TiN - nACo - AICrTiN/SiN - TiN/SiN

- for hard machining, milling, drilling, reaming
- for paper cutting
- for superalloys

Oxide coating
Cathodes: Ti - AISi - AlCr $_{45}$ - AlTi
Stoichiometry:
nACoX ${ }^{4 \oplus}$: TiN - AITiN - nACo - AlCrON
Application fields:

- HSC dry turning and milling

Sputtered Coatings

The machine symbols show which machine the coating can be deposited by.
The coatable stoichiometries can be different depending on the machine used.

TiB ${ }_{2}-S C / L^{\circledR}$

Sputtered Monoblock Coating (CrN and ZrN also common)
Cathodes: X: Ti or Cr or CrTi
Stoichiometry:
LGD - TiN-(CrN, ZrN, CrTiN) SCIL ${ }^{\oplus}-\mathrm{MB}$

- universal use, when smooth coating indispensable
ta:C

WC/C

Carbon Based Coating: ta-C
Stoichiometry: C-MB, sp ${ }^{3}>50 \%$
Cathodes: $\boldsymbol{P L}^{\text {¹7 }}$: Cr - C $\pi^{\text {cov2 }}$: Ti-LARC - Al-LARC - Cr-LARC - C-SCIL

- hard DLC ${ }^{3}$ coating with > 35 Gpa
- for components, bearings
- for medical parts and tools
- smooth surface without polishing

Hybrid Coatings Deposited by LACS ${ }^{\circledR}$-Technology

X-VIc ${ }^{\circledR}:$ a:C:H:Me; metal doped Carbon Based Diamond Like Coating (CBC)
The CBC and DLC ${ }^{2}$ coatings can be deposited as top layers only.
X-VIc ${ }^{2 \oplus}: \mathrm{a}: \mathrm{C}: \mathrm{H}: \mathrm{Si}$ metal free silicon doped Carbon Based Diamond Like Coating (DLC ${ }^{2}$)

Basic Data

What is a Coating? A Thin Hard Film.

Cost Advantage

Production Costs with Solid Carbide Drills

Production costs $=$ machine costs + work costs + tool costs Tool changing costs are not considered, all tools reground 10x

Typical Coating Surfaces

SCIL ${ }^{\text {® }}$
$\mathrm{S}_{\mathrm{a}}=0.02-0.08 \mu \mathrm{~m}$

ARC
$S_{a}=0.15-0.45 \mu \mathrm{~m}$

$\mu-$ ARC $^{\circledR}$

$S_{a}=0.003-0.008 \mu \mathrm{~m}$
requires post-polishing

TLTTT苋

Coating Features

Influence of the Most Important Component Materials on Coating's Features

Coating				$\begin{aligned} & \mathscr{0} \\ & \text { D } \\ & \text { 든 } \\ & \text { 포 } \end{aligned}$			む 든 둗 후							
Ti+N=TiN Basic coating	+N	0	-	+	+	+	0	0	0	-	0	no	0	0
TiCN	+C	0	--	+ +	+ +	-	-	--	-	--	+ +	no	0	0
typically TiAICN with Al~20-25\%	+ AI	$1+1$	+	-	-	+	+	+	+	+	-	no	--	0
typically TiAIN	+AI/ (-C)	+	-	+ if $\mathrm{Al}<\mathrm{X} \% /-$ if $\mathrm{Al}>\mathrm{X} \%$	+	+	+	+ +	+	-	-	no	-	+
typically AITiCrN	$+\mathrm{Cr}$	-	+	+	+	+	+	+	$(+)$	+	-	no	-	(-)
typically AICrN $\mathrm{Cr}-30 \%$	+ $\mathrm{Cr} /(-\mathrm{Ti})$	--	+	$(+)$	+ +	$1+1$	+	+	$1+1$	+	(-)	no	--	-
typically TiAIN/SiN CrAIN/SiN, AICrTiN/SiN	+Si	+ +	$1+1$	+ +	+	+ +	+ +	+ +	+ +	0	0	yes	--	+

Adhesion

Critical Loads at Scratch Test

End of crack: partial delamination

Hardness

Average values from min. 10 measurements with deviation; $<5 \%$ Scratch length: 70 mm - scratch speed: $0.4-60 \mathrm{~mm} / \mathrm{min}$ Measured on tungsten carbide K40, by CSEM, Neuchâtel, Switzerland

Absorption of Cracks by Multilayer Structure

Source: TOPNANO-Project, EPF Lausanne, Switzerland Measuring hardness by nanoindentation

Nanostructures

Coating Features

Nanogradients

The coating structure is continuously changed. The coating composition can be modified by gas inlet or metallic content variation.

Crack free indentation of nanogradient coating

Nanolayers

The coating hardness depends on the thickness period of the sublayers. The optimum period of the superlattices increases hardness enormously.

Nanocomposites

Modelling view of the 5 nm average grain size sample at an indentation depth of 20 A .
The Nanocomposite coatings have a higher hardness than conventional coatings. Because the amorphous SiN matrix enwraps (infoldes, covers) the nanocrystalline grains and avoids their growth.

Variation of Nanohardness by Gas Inlet

Hardness of Nanocomposite with Nanolayer Structure

Grain Size Comparison: $\mathrm{Ti}_{1-x} \mathrm{Al}_{x} \mathrm{~N}^{2}$ and $\mathrm{nACo}^{2}=\mathrm{Ti}_{1-x} \mathrm{Al}_{x} \mathrm{~N} / \mathrm{SiN}$

Calculated from XRD data using the Scherrer Equation Same linear behavior but smaller crystallites than in the Cr -based system

ТนАТіт:

Coating Features

Typical Honing Widths for End Mills for Different Work Piece Materials

Drilling, Milling, Reaming Typical Coating Thicknesses

Hobbing
 Influence of Coating Thickness

- $3.3 \mu \mathrm{~m}$ vs. $4 \mu \mathrm{~m}$ (at the center of the fly-cutter's tooth head)
- 20% higher thickness tool life time doubled!
- Higher coating thickness delays crater wear

Thickness measured
by Calotest
at center of the head
Thickness measured
by Calotest
at center of the head
Thickness measured
by Calotest
at center of the head

Cutting face
Cross section SEM

Conventional Coatings

Drilling with Solid Carbide

Aluminum Extrusion

Tool Holders

Coating of milling head holders with CrTiN^{2} \& golden top color by the π^{303} configuration. Source: Fraisa, Bellach, Switzerland

Tool Life Comparison

Work piece: wheel hub, Material: $38 \mathrm{MnV} 35, \mathrm{R}_{\mathrm{m}}=800 \mathrm{~N} / \mathrm{mm}^{2}$, Ext. coolant: emulsion 7%, carbide K40UF, $d=12.6 \mathrm{~mm}, \mathrm{a}_{\mathrm{p}}=13.5 \mathrm{~mm}, \mathrm{v}_{\mathrm{c}}=78 \mathrm{~m} / \mathrm{min}, \mathrm{f}=0.25 \mathrm{~mm} / \mathrm{rev}$. - Source: Daimler, Germany

Tool Life Comparison

Layer sequence in $\mu \mathrm{m}: 1 \mathrm{xTiN}=1.3-9 \mathrm{x}(\mathrm{TiN}=0.25 / \mathrm{CrN}=0.4)-1 \mathrm{xCrN}=0.35$ Mat.: Al 6012; Total coating thickness: $7.5 \mu \mathrm{~m}$ - Source: Metalba, Italy

Coating Tool Holders Against Corrosion

- for molds and dies
- with very good chemical resistance
- for machine components
- with very fine multilayer structure and surface
- for tool holders
- with selectable top color
- deposited by LARC®-technology
- for aluminum cutting and forming
- with high hardness and toughness

Coating thickness $=4 \mu \mathrm{~m}$

Mold for mobile phone coated by CrN toplayer

Тนกтіт:

Applications

Milling

High Productivity Increase by Coating of Saw Bands

Tool: Bimetal sawband M42-41x1.3mm 3-4 ZpZ - Edge preparation: Brushing - Work piece material: Stainless steel 1.4571 $\emptyset 200 \mathrm{~mm}-\mathrm{v}_{\mathrm{c}}=35 \mathrm{~m} / \mathrm{min}-\mathrm{v}_{\mathrm{t}}=13 \mathrm{~mm} / \mathrm{min}, \mathrm{P}_{\mathrm{c}}=20 \mathrm{~cm} 3 / \mathrm{min}, \mathrm{f}_{2}=0.0027 \mathrm{~mm} /$ tooth - Cooling: Emulsion (4\%) Source: Wikus, Spangenberg, Germany

High Performance Cutting with Optimized Edge Geometries

Impact of edge preperation on coated solid carbide end mills. "The better the coating, the more important the edge preperation."

Work piece material: 1.2379-X155CrVMo12-1 - FRAISA end mill NX-V - $\mathrm{d}=10 \mathrm{~mm}$ $\mathrm{z}=4-\mathrm{a}_{\mathrm{e}}=0.25 \times \mathrm{d}-\mathrm{a}_{\mathrm{p}}=1.5 \times \mathrm{d}-\mathrm{v}_{\mathrm{c}}=150 \mathrm{~m} / \mathrm{min}-\mathrm{f}_{\mathrm{z}}=0.05 \mathrm{~mm} / \mathrm{z}-\mathrm{MQL}$ Measured by GFE, Schmalkalden, Germany

Tapping

TiN-eBeam at thread no. 403

TiN ${ }^{1}-\mathrm{SClL}^{\circledR}$ at thread no. 527
$\mathrm{TiCN}^{2}-\mathrm{SClL}^{\circledR}$ at thread no. 527

Tool Life Comparison

Nanocomposites

nACo ${ }^{\circledR}$: AITIN/SIN

Nanocomposites Heat Resistance Comparison

Composite of non-mixable components.
Nanocrystalline grains are embedded into an amorphous matrix

Gear Cutting with Inserts

Multilayer for roughing:
At dynamic load the cracks are absorbed at the borders of the sublayers.

Monolayer for finishing
Higher hardness increases tool life.

Drilling

ТНАТіт:

Applications

Bevel Gear Hobbing

Milling of Bevel gears with carbide Tri-Ac hobbing cutters Source: Gleason, Rochester, NY, USA

Drilling

Tool Life Comparison

Tool: $d=10 / 12 \mathrm{~mm}$ solid carbide drill Material: carbon fiber composite / aluminum Source: Unimerco, Lichfield, UK

Plunging

Wear Comparison

Material: IN100 - Nickel Base - 12Cr-18Co-3.2Mo - 4.3Ti-5.0AI-0.8V-0.02B-0.06Zr
Tool: Carbide insert - Minimaster MM12; $D=12 \mathrm{~mm}, r=2 \mathrm{~mm}, \mathrm{z}=2$ $\mathrm{v}_{\mathrm{c}}=21-30 \mathrm{~m} / \mathrm{min}, \mathrm{fz}=0,05 \mathrm{~mm}, \mathrm{a}_{\mathrm{p}}=20 \mathrm{~mm}, \mathrm{a}_{\mathrm{e}}=3 \mathrm{~mm}$, turbine milling Source: EU R\&D project Macharena - Volvo Aero Norge AS

Nanocomposites nACRo ${ }^{\circledR}: A / C r N / S i N$

Injection Molding Aluminum Injection Mold with Dedicated Multilayer-nACRo

Source: Gibbs Die Casting Ltd. Retsag, Hungary
 Fa. Thyssen Krupp Presta Ilsenburg, Germany

Slotting

Tool Life Comparison in Inconel 718

TLTTIT吴

Applications

Punching Tool Life Comparison

Turning

Material: Somaloy SMC550; Soft Magnetic Composites $\mathrm{v}_{\mathrm{c}}=700 \mathrm{~m} / \mathrm{min}, \mathrm{f}=0.1 \mathrm{~mm} / \mathrm{rev}-\mathrm{a}_{\mathrm{o}}=0.2 \mathrm{~mm}$
Measured by IWF, TU Berlin, EU R\&D project PM-MACH

Sawing

Tool Life Comparison

Solid carbide saw blades, $\emptyset 125 \times 3.6 \mathrm{~mm}, \mathrm{z}=100$ - sintered workpiece material: Co1 $\mathrm{n}=300$ RPM $-\mathrm{v}_{\mathrm{f}}=800 \mathrm{~mm} / \mathrm{min}-\mathrm{a}_{\mathrm{p}}=35 \mathrm{~mm}$, coolant: emulsion 7% - Source: Prétat, Selzach, CH

Cathode Configurations

TripleCoatings ${ }^{\text {® }}{ }^{\text {® }}$

AICrN ${ }^{3}$: For Dry Cutting Abrasive Materials

Stoichiometry: CrN - Al/CrN-ML - AICrN

$\pi^{\text {P7PLus }}$:1: AI	-2: Cr		
π^{6817}	:1: none	-2: AI	-3: Cr	-4: AlCr_{30}
PL ${ }^{0017}$:1: Cr	- $2: \mathrm{AlCr}_{36}$	-3: none	-4: AlCr_{36}
π^{1571}	:1: Ti	- 2: Al	-3: Cr	-4: $\mathrm{AlCr}_{30}-5: \mathrm{AlCr}_{30}$

$\mathrm{AICrN}^{3}+: \mathrm{AlCrN}^{3}$ doped by titanium: TiN - AITiN - AI/CrN-ML
$\pi^{6,87} \quad: 1: \mathrm{Ti} \quad-2: \mathrm{Al} \quad-3: \mathrm{Cr} \quad-4: \mathrm{AlTi}_{33}$

ALL $^{3 ®}:$ AITiCrN 3 : Universal for Cutting and Forming

Stoichiometry: Ti(Cr)N - Al/CrN-ML - AITiCrN

$\pi^{\text {P1P }}$:1: Al	- 2: CrTi_{15}		
π^{6071}	:1: Ti	-2: Al	-3: Cr	-4: none
PL ${ }^{1017}$:1: Cr	- 2: AlTi_{3}	- 3: AITi ${ }_{3}$	- 4: AlCr_{36} (AITiCrN-G)
PL ${ }^{1011}$:1: Cr	- 2: AITi3	-3: Cr	-4: AlTi_{33} (AITICrN-ML)
π^{1517}	:1: Ti	- 2: Al	-3: Cr	-4: AlTi $_{33}-5: \mathrm{AlTi}^{\text {a }}$

nACo ${ }^{\text {3] }}$: For Universal Use, Turning, Drilling

Stoichiometry: TiN - AITiN - nACo

π^{6071}	:1: Ti	- 2: AlSi_{18}	- 3: none	4: AlTi_{33}
PL ${ }^{1071}$: 1: Ti	- 2: AITi $_{3}$	-3: AIT	- 4 : AlTi_{33}

nACRo ${ }^{38}$: For Superalloys, Milling, Hobbing
Stoichiometry: CrN - AITiCrN-ML - nACRo

π^{6717}	$: 1: \mathrm{Ti}$	$-2: \mathrm{AlSi}_{18}$	$-3: \mathrm{Cr}$
$\boldsymbol{L L}^{\text {OODI }}$	$: 1: \mathrm{Cr}$	$-2: \mathrm{AlCr}_{30} \mathrm{Si}_{10}-3: \mathrm{Cr}$	$-4: \mathrm{AlCr}_{36}$

TiXCo ${ }^{3 \text { e }}$: For Superhard Machining, Milling, Drilling

Stoichiometry: TiN - nACo - TiSiN

π^{21}	:1: Al	- 2: TiSi	(TiXC	
π^{6871} eco	:1: Ti	- 2: AI	-3: TiS	-4: non
π	:1: Ti	- 2: A	-3: TiSi ${ }_{2}$	-4: AIT
$P L^{10012}$:1: Ti	- 2: AlTi_{3}	-3: TiS	

BorAC ${ }^{3 \ominus}$: For Milling and Hobbing

Stoichometry: CrN - AICrN - AICrTiBN

$\pi^{6.17}$ ec	-	2: AI	-3: Cr	(orAC $^{3{ }^{\text {® }} \text {-ARC) }}$
π^{6812}	:1: Ti	-2: Al	-3: Cr	-4: TiB_{2}
PL ${ }^{\text {²7 }}$:1: Ti	-2: AICrB	-3:	

OUACCOatings ${ }^{4 ®}$

> ALL 40 : AICrTiN 4 : Universal for Cutting and Forming
> CrTiN - AICrTiN-G - Al/CrN-ML - AICrTiN - (CrCN optional)
> $\pi^{4072}: 1: \mathrm{Ti} \quad-2: \mathrm{Al} \quad-3: \mathrm{Cr} \quad-4: \mathrm{AlCr}_{30}$
> $\pi^{7517}: 1: \mathrm{Ti}-2: \mathrm{Al}-3: \mathrm{Cr}-4: \mathrm{AlCr}_{30}-5: \mathrm{AlCr}_{30}$

ALL ${ }^{48}$ eco : Dedicated for Big Hobs

CrTiN - AICrTiN-G - Al/CrN-ML - AICrTiN - (CrCN optional)
$\pi^{6071}: 1: \mathrm{CrTi}_{15}-2: \mathrm{Al} \quad-3: \mathrm{Cr} \quad-4$: none

nACo ${ }^{48}:$ For Universal Use, Turning, Drilling

$$
\begin{aligned}
& \text { TiN - AITiN-G - AITiN-ML - nACo } \\
& \begin{array}{lll}
\pi^{427}: 1: \mathrm{Ti} & -2: \mathrm{Al} & -3: \mathrm{AlSi}_{18}-4: \text { AlTi }_{33} \\
\pi^{1527}: 1: \mathrm{Ti} & -2: \mathrm{Al} & -3: \mathrm{TiSi}_{20}-4: \mathrm{AlT}_{33}-5: \text { AlTi }_{33}
\end{array}
\end{aligned}
$$

nACRo ${ }^{\text {ae }}$: For Superalloys, Milling, Hobbing

CrN - AICrN-G - AICrN-ML - nACRo

π^{687}	$1: C r$	$-2: \mathrm{AlSi}_{18}-3: \mathrm{Cr}$
$\pi^{\nu 572}: 1:$	$-4: \mathrm{AlCr}_{30}$	
none $-2: \mathrm{AlSi}_{18}-3: \mathrm{Cr}$	$-4: \mathrm{AlCr}_{30}-5: \mathrm{AlCr}_{30}$	

TiXCo ${ }^{\text {4® }}$: For Superhard Machining
TiN - nACo-G - AITiCrN/SiN - TiSiN

$\pi^{6,71}: 1: T i$	$-2: A l$	$-3: \mathrm{TiSi}_{20}-4: \mathrm{AlCr}_{30}$
$\pi^{\nu 572}: 1: \mathrm{Ti}$	$-2: \mathrm{Al}$	$-3: \mathrm{TiSi}_{20}-4: \mathrm{AlT}_{33}-5: \mathrm{AlT}_{33}$

nACoX ${ }^{4 .}$: For HSC Dry Turning and Milling

TiN - AITiN - nACo - AlCrON
$\pi^{6,71}: 1: \mathrm{Ti}^{-2}-\mathrm{AlSi}_{18}-3: \mathrm{AlCr}_{45}-4: \mathrm{AlTi}_{33}$

BorC0 ${ }^{4 \oplus}:$ For Hard Machining and for Superalloys

Stoicometry: CrTiSiN - AICrN - AICrTiBN - TiSiN
$\pi^{677}: 1: \mathrm{TiSi}_{20}-2: \mathrm{Al} \quad-3: \mathrm{Cr}^{2} \quad-4: \mathrm{TiB}_{2}$

TnipleCoatings ${ }^{3{ }^{\text {® }}}$

Triple Coating Structure Depth Profile of nACo ${ }^{3}{ }^{\text {® }}$

Material: SUS316 mobile phone housing - Solid Carbide End Mill, D4-z=4 - cutting length $6 \mathrm{~mm}-\mathrm{a}_{\mathrm{p}}=0.1$ $a_{e}=4.0-v_{c}=100.53 \mathrm{~m} / \mathrm{min}-n=8000 \mathrm{~min}-1-f_{2}=0,0625 \mathrm{~mm} / \mathrm{z}-\mathrm{f}=0,2500 \mathrm{~mm} / \mathrm{rev}-\mathrm{v}_{\mathrm{f}}=2000 \mathrm{~mm} / \mathrm{min}-$ Coolant: emulsion Source: Füllanti, Shenzen, China

Turning

2 micro
 nozzles

TripleCoatings ${ }^{3{ }^{\circledR}}$ in Tool Life Comparison to CVD-Coating

ТนАТіт:

Applications

Turning -Grooving Tool Life Comparison

Material: Turbine housing - cast chrome steel, with reduced Ni content $v C=63 \mathrm{~m} / \mathrm{min}-f=0.1 \mathrm{~mm} /$ rev - Minimum lubrication - Tested by Daimler, Stuttgart, Germany

Drilling

Tool Life Comparison

Solid carbide drill; Ø 8 mm; DIN6539-D8 - Work material 42CrMoV, HRC 30~32 successive cutting; drilling depth $\mathrm{a}_{\mathrm{p}}=24 \mathrm{~mm} \mathrm{v}_{\mathrm{c}} 150 \mathrm{~m} / \mathrm{min}$; 5968 rpm ; feed/rotation $\mathrm{f}=0.15 \mathrm{~mm}$; feed rate $\mathrm{v}_{\mathrm{f}}=895 \mathrm{~mm} / \mathrm{min}$; coolant 8% - Source: TDC Dalian, China

Cooled Milling in Stainless Steel $n A C R 0^{3 ®}$: Highest resistance against temperature changes

Tool: Milling head with SDMT inserts - Cooling: Emulsion Material: Stainless steel - A500 $=<1.4301>$ X5CrNi18-10 $v c=200 \mathrm{~m} / \mathrm{min}-\mathrm{n}=1273 \mathrm{U} / \mathrm{min}-\mathrm{ap}=3 \mathrm{~mm}-\mathrm{ae}=32 \mathrm{~mm}-\mathrm{fz}=0,2 \mathrm{~mm}$

TripleCoatings ${ }^{3 ®}$

 TiXCo ${ }^{3 \ominus}$ for Hard TasksMilling with TiXCo ${ }^{3}$ Hardened Steel with 54 HRC

Material: Cold working steel - 1.2379 - SKD11-Tool: $d=10 \mathrm{~mm}-\mathrm{z}=2$ $\mathrm{v}_{\mathrm{c}}=100 \mathrm{~m} / \mathrm{min}-\mathrm{a}_{\mathrm{p}}=0.3 \mathrm{~mm}-\mathrm{a}_{\mathrm{e}}=5.5 \mathrm{~mm}-\mathrm{f}_{\mathrm{z}}=0.165 \mathrm{~mm}-\mathrm{MQL}$

Super Hard Milling

Torus end mill in cold-working steel X210Cr12 (1.2080) - $61.5 \mathrm{HRC} \varnothing 8 \mathrm{~mm}-\mathrm{z}=4-\mathrm{ap}=0.1 \mathrm{~mm}-\mathrm{ae}=3 \mathrm{~mm} v \mathrm{c}=100 \mathrm{~m}$ $\mathrm{min}-1-\mathrm{n}=4000 \mathrm{~min}-1-\mathrm{fz}=0.2 \mathrm{~mm}-\mathrm{vf}=3200 \mathrm{~mm}$ min-1 - dry - Source: Development project LMT Fette-PLATIT

Milling in Stainless Steel

Tool Life Comparison

Tool: End mills - d=10 mm - Criteria: wear $<=0.3 \mathrm{~mm}$ Workpiece: stainless steel - X2CrNiMo - Coolant: emulsion $v_{\mathrm{c}}=250 \mathrm{~m} / \mathrm{min}, \mathrm{f}=3000 \mathrm{~mm} / \mathrm{min}, a_{\mathrm{p}}=0.3 \mathrm{~mm}, \mathrm{a}_{\mathrm{e}}=4 \mathrm{~mm}$

TLNTTE:

TripleCoatings ${ }^{3 ®}$ Applications with PL 2021

Tool Life Comparison

Work piece material: 34CrNiMo6 (1.6582) $\mathrm{vc}=45 \mathrm{~m} / \mathrm{min}, \mathrm{fn}=0.12 \mathrm{~mm} / \mathrm{rev}, \mathrm{RPM}=500$ Coolant with oil - Source: Unimerco, Sunds, DK

Material: 4140, H13, S7, D2, A2, Steel plates Tools: Saw blades, Carbide tipped 22" x 70"

0山ALCoatings ${ }^{4 ®}$

$n A C o^{4}$ \& n^{\circledR} ARo $^{4}{ }^{\circledR}$

Using Coating Material Components to Increase Performance

Al: Heat resistance: 4 Cr: Thoughness + abrasive wear resistance: \uparrow
$\mathrm{Al} / \mathrm{Cr} / \mathrm{Ti}$: Nanolayer: thoughness: 4 Ti: risk for break out: \downarrow Boron: chemical stability: $\underset{\sim}{\$}$

HSS hobbing $-m_{n}=2.31, v_{c}=150 \mathrm{~m} / \mathrm{min}, f_{a}=1.69 \mathrm{~mm} / \mathrm{rev}, \mathrm{z}_{\mathrm{o}}=5$, dry Measured by the 1 -tooth test at the University Magdeburg, IFO, Germany

Tool Life Comparison at Dry Hobbing

Mat. : $20 \mathrm{MnCrB5}-\mathrm{m}=2.7$
Tool: 2-teeth - PM-HSS $-v_{c}=150 \mathrm{~m} / \mathrm{min}-\mathrm{f}_{\mathrm{a}}=1.7 /$ work piece revolution - with 5 gears Measured at the University of Magdeburg, Germany

Wear Comparison at Hard Milling with Inserts

Applications

Drilling

Tool Life Comparison in High Strength Steel

Wear Comparison in Hot Working Steel, 54HRC

Wear Behaviour Comparison at Hard Milling after $t_{c}=140 \mathrm{~min}$

Coater B
140 min milling duration

Coater C
140 min milling duration

TiXCO ${ }^{3{ }^{3}}$ - AlTi
140 min milling duration

Work piece: $1.2379(60 \mathrm{HRC})$ - Tool: $\mathrm{d}=10 \mathrm{~mm}$ - ball nose - Roughing: $\mathrm{v}_{\mathrm{c}}=87 \mathrm{~m} / \mathrm{min}-\mathrm{f}_{2}=0.065-\mathrm{a}_{\mathrm{p}}=0.4 \mathrm{~mm}-\mathrm{a}_{\mathrm{e}}=0.4 \mathrm{~mm}-$ Finishing: $\mathrm{v}_{\mathrm{c}}=167 \mathrm{~m} / \mathrm{min}-$ $\mathrm{f}_{2}=0.07 \mathrm{~mm}-\mathrm{a}_{\mathrm{p}}=0.12 \mathrm{~mm}-\mathrm{a}_{\mathrm{e}}=0.12 \mathrm{~mm}$ - Source: Fraisa, Bellach, Switzerland

OUACCOatings ${ }^{4 ®}$

ALL ${ }^{\text {® }}$

Tool Life Comparison in Heat Treated Steel

ALL $^{4{ }^{\text {® }}:}$ AICrTiN $^{4{ }^{\text {® }}}$

Material: Tool steel, 1.2312, HRC 28.4, $a_{\mathrm{p}}=14 \mathrm{~mm}, \mathrm{a}_{\mathrm{e}}=0.6 \mathrm{~mm}, \mathrm{v}_{\mathrm{c}}=177 \mathrm{~m} / \mathrm{min}$ Tools: $d=8 \mathrm{~mm}$, Fraisa NB-NVDS, $z=4, f_{2}=0.18 \mathrm{~mm} /$ tooth - dry

A, B, C, D, F, G Market coatings

Machine: DMC80 linear - Material: 42CrMo4 160x50x300 - Roughing - 6% FU60 external emulsion - Tool: H4038217-3-0.2 D3 R0,2 z4 - $D_{c}=3 \mathrm{~mm}$

Trochoidal Milling

Tool Life Comparison at Roughing in Nickel Based Material

Work piece: thin-walles bars from Inconel 718 - Tool: Solid carbide torus end mill $d=10 \mathrm{~mm}-\mathrm{z}=4$ $\mathrm{v}_{\mathrm{c}}=90 \mathrm{~m} / \mathrm{min}-\mathrm{a}_{\mathrm{e}}=0.1 \mathrm{~mm}-\mathrm{a}_{\mathrm{p}}=12 \mathrm{~mm}-\mathrm{f}_{2}=0.21 \mathrm{~mm} / \mathrm{t}$ Coolant: Blaser Swisslube B-Cool 9665 - Measured at GFE Schmalkalden, Germany

ТนАТіт:

Applications

Wear Comparison at Milling with QuadCoatings ${ }^{4}$

Tools: Solid carbide end mills $-d=8 \mathrm{~mm}-\mathrm{z}=4-\mathrm{ap}=5 \mathrm{~mm}-a=3.5 \mathrm{~mm}-$ $\mathrm{vc}=110 \mathrm{~m} / \mathrm{min}-\mathrm{f}=0.24 \mathrm{~mm} / \mathrm{rev}-$ Work piece material: DIN $1.2085-$ X33CrS16 - 31 HRC External minimum lubrication

Tool Life Comparison

Applications with ALL ${ }^{4 ®}+$ Tribo at Fine Blanking

Material of punches BÖEHLER S600 (58-60 Hrc) \& K890 (60-62 HRc) Cutting punches with oil for cooling agent - Strokes / min: 25 to 40 Work piece material: S420-MC (EN-10149-2) \& S275JR (EN-10125) - Thickness of material 4.5 to 7 mm Source: HNCF, Italy

Thread Forming

Spindle Torque Measured in High Strength Steel

Oxide and Oxynitride as !UACCoatings ${ }^{4 ®}$

Goal of the Oxide and Oxynitride Coatings

Separator to decrease chemical affinity between tool and workpiece in dry cutting processes at high temperature

Wear protection

- against adhesive wear
- against abrasive wear
- stable against further oxidation, avoiding oxygen diffusion
- chemical and thermal insulation

Layer Architecture

Decreasing friction

- At temperatures over $1000^{\circ} \mathrm{C}$
- Reducing build-up edges and
- Reducing material interdiffusion in the tribological contact zone
- chemical indifference

Layer-architecture

- "Sandwich" like at CVD
- Metal nitride basis necessary, to avoid cracks and plastic deformation

Features of nACoX

- Nitrogen to oxygen ratio: N/O: 50/50\% - 80/20\%
- Typical coating thickness on turning inserts: 4-18 $\mu \mathrm{m}$
- Typical total hardness: 30 GPa
- Typical Young's modulus: $\sim 400 \mathrm{GPa}$

Depth Profiles of $n A C o X^{4}$

covering nitride; AICrN, TiAIN, optional oxide or oxynitride; $\left(\mathrm{Al}_{1}, \mathrm{Cr}\right)_{2} \mathrm{O}_{3}-(\mathrm{Al}, \mathrm{Cr})(\mathrm{O}, \mathrm{N})$
Nanocomposite; nACo, nACRo
Nitride; AICrN, TiAIN
adhesion layer
tungsten carbide

EDX (Energy-dispersive X-Ray spectroscopy) Element Map shows the distribution of the elements in the depth of the coating

surface

TLTTIT吴

Applications

OXI-Option: Oxide Ouad-Coatings versus CVD at Turning of High Alloyed Steel

SME can more than compete with CVD using their own, thick PVD-OXI-coatings!

Inserts: WNMG - vc $=110 \mathrm{~m} / \mathrm{min}-\mathrm{f}=0.4 \mathrm{~mm}$ - Cutting length/cycle: 6.42 m Material Ni-steel - Rm=620 N/mm2 - Coolant: MQS Source: Daimler AG, Stuttgart, Germany

Drilling in Difficult to Cut Austempered Ductile Cast Iron with Oxynitride Coatings

Zr-O-N with Gradient Triple-Structure
Grindball Diameter [mm]: 30
$300 \mathrm{U} / \mathrm{min} 120 \mathrm{~s}$
Thickness: $7.260 \mu \mathrm{~m}$

 $\mathrm{vc}=120 \mathrm{~m} / \mathrm{min}-\mathrm{f}=0.3 \mathrm{~mm} / \mathrm{rev}-\mathrm{ap}=15 \mathrm{~mm}$ - Internal MOL Source: GFE, Schmalkalden, Germany

Profile Milling with Inserts - Roughing

Material $1.2379-\mathrm{Rm}=1000 \mathrm{~N} / \mathrm{mm} 2$
$\mathrm{vc}=240 \mathrm{~m} / \mathrm{min}-\mathrm{fz}=0.4 \mathrm{~mm}$ ap $=1.5 \mathrm{~mm}-\mathrm{ae}=1 \mathrm{~mm}$

SCIL ${ }^{\circledR}$ Coatings and Their Applications

π 422pLus

Sputtering power: Up to 30 kW - No columnar structure - Reactive and non-reactive processes Growth rate in reactive process: $\approx 2 \mu \mathrm{~m} / \mathrm{h}$ in 3 -fold rotation Application fields: gun drilling, tapping, decorative coatings

Thread Forming

	Adhesion layer Ti - TiN	Core Layer TiCN	Top layer TiCC
Total thickness $[\mu \mathrm{m}]$	1. Thickness $[\mu \mathrm{m}]$	2. Thickness $[\mu \mathrm{m}]$	3. Thickness $[\mu \mathrm{m}]$
2.59	1.16	0.41	1.02

Micro Tooling

SCILVIc ${ }^{2}$: Structure and Roughness

TiCN-SCIL ${ }^{\oplus}$ Torque and Force Comparison

Applications

$\mathrm{TiB}_{2}-\mathrm{SCIL}^{\oplus}$ and Its Characteristical Features

- Tailored for aluminum machining
- Preferable for softer, forgeable alloys with lower Si contents ($\sim 6 \%$)
- For machine components with
- high hardness
- low friction coefficient
TiB_{2} characteristics:
- Thickness $=1.3 \mu \mathrm{~m}$
- $\mathrm{H}=32.8 \mathrm{GPa}$
- $\mathrm{E}=515 \mathrm{GPa}$
- $\mathrm{LC}_{2} \mathrm{HM}>100 \mathrm{~N}$
- Lc_{2} HSS > 51.8 N
- Homogeneous surface remains after coating
- Ideal cutting edge coverage
- No set-free of cutting edges even post treatment applied

FRAISA AX-RV2 Torus end mill; ø12 mm; $r=2.5 \mathrm{~mm} ; Z=2$; emulsion $5-6 \%$ $0=120 \mathrm{~cm}^{3} / \mathrm{min}$; milling distance/cycle $=2.63 \mathrm{~m}$; Machining Center DMC 64 V linear Al alloy AlZnMgCu1.5 (Alloy 7075); State = hard; 156 HB; $\mathrm{a}_{\mathrm{p}}=6 \mathrm{~mm} ; \mathrm{a}_{\mathrm{e}}=5 \mathrm{~mm} ; \mathrm{v}_{\mathrm{c}}=377 \mathrm{~m} / \mathrm{min} ; \mathrm{n}=10^{\prime} 000 \mathrm{~min}-1$
$\mathrm{f}_{\mathrm{z}}=0.20 \mathrm{~mm} / Z ; f=0.40 \mathrm{~mm} / \mathrm{rev} ; v_{\mathrm{f}}=4^{\prime} 000 \mathrm{~mm} / \mathrm{min}$

WC/C-SCIL ${ }^{\circledR}$ and its Characteristical Features

Machine components coated by WC/C-SCIL ${ }^{\text {® }}$

Coating thickness: $1.44 \mu \mathrm{~m}$

$S_{\mathrm{a}}=3.5 \pm 0.9 \mathrm{~nm}-\mathrm{S}_{\mathrm{q}}=9.3+-5.6 \mathrm{~nm}$

Hybrid LACS ${ }^{\circledR}$ Coatings

Decreasing Grain Size and Increasing Hardness with LACS $^{\circledR}$-Technology for BorAC ${ }^{3 \circledR}$ - Coating (AICrTiN/BN)

Cross section SEM: Armorphous-like structure when adding Boron

XRD: 111 Grain size changes $57 \mathrm{~nm} \rightarrow 16 \mathrm{~nm}$ with increasing Boron content Source: C. Tritremmel et al. Surface \& Coatings 213 p.1-7

Interrelation between Hardness, Internal Stress and Boron Content

The internal stress can be reduced with higher boron content, in spite of higher hardness

Using Boron as a Material Component for Optimizing the Coatings' Internal Stress

AICrN/BN coating with triple structure measured by energy dispersed by X-Ray spectroscopy Source: University Freiberg, Germany

Mat.: Tool steel - $1.2085-$ X33CrS16 - HRC $29.2-a_{\mathrm{p}}=5 \mathrm{~mm}-\mathrm{a}_{\mathrm{e}}=02.5 \mathrm{~mm}-\mathrm{v}_{\mathrm{c}}=120 \mathrm{~m} / \mathrm{min}$ Tools: $\mathrm{d}=8 \mathrm{~mm}$ - Fraisa NX-V Torus $-\mathrm{d}=2.2 \mathrm{~mm}-\mathrm{z}=4-\mathrm{f}_{2}=0.06 \mathrm{~mm} /$ tooth -MOL Average wear $=($ Max. margin wear + VBmax (clearence wear) + Top edge wear + corner wear) $/ 4$

Applications for Milling and Drilling

Using LACS ${ }^{\circledR}$-Technology with Boron and Silicon at Milling Cold Working Steel

Mat.: Cold working steel, 1.2379 (X155CrMoV 5-1), $a_{\mathrm{p}}=10 \mathrm{~mm}, \mathrm{a}_{\mathrm{e}}=8 \mathrm{~mm}, \mathrm{v}_{\mathrm{c}}=160 \mathrm{~m} / \mathrm{min}$ $z=4, f_{z}=0.06 \mathrm{~mm} / \mathrm{rev}-$ dry
Using LACS-Technology: BorAC ${ }^{\circledR}$ - AICrN/BN: Cutting Performance at Milling

Mat.: Tool steel - $1.2085-$ X33CrS16 - HRC $29.2-a_{p}=5 \mathrm{~mm}-\mathrm{a}_{\mathrm{e}}=02.5 \mathrm{~mm}-\mathrm{v}_{\mathrm{c}}=120 \mathrm{~m} / \mathrm{min}$
Tools: $\mathrm{d}=8 \mathrm{~mm}$ - Fraisa NX-V Torus $-\mathrm{d}=2.2 \mathrm{~mm}-\mathrm{z}=4-\mathrm{f}_{2}=0.06 \mathrm{~mm} /$ tooth -MOL Average wear $=($ Max. margin wear + VBmax (clearence wear) + Top edge wear + corner wear) $/ 4$

Using LACS-Technology: BorAC ${ }^{3 \text { ® }}$ - AITiCrN/BN: Wear Behavior at Drilling

 Tools: Solid carbide drill $-\mathrm{d}=6.8 \mathrm{~mm}-$ Schlenker GmbH $-z=2-\mathrm{f}=0.15 \mathrm{~mm} / \mathrm{rev}-\mathrm{MOL}$

Hybrid LACS ${ }^{\circledR}$ Coatings for Hobbing

BorAC ${ }^{\circledR}$ - Hobbing with Boron Doped AICrN-ML

Hobbing Benchmark

AICrN-ref. at 3.12 m

BorAC $^{\oplus}$ at 3.12 m

The Influence of Boron Content
The lur Bon

TLTTIT®

Applications for Hard Milling and Reaming

Using LACS ${ }^{\circledR}$-Technology with Boron and Silicon At Hard Milling (63 HRC)

Cutting Performance; Lf / VBmax [min $/ \mu \mathrm{m}]$ Cutting time per $1 \mu \mathrm{~m}$ wear

Using LACS ${ }^{\circledR}$-Technology with Boron and Silicon at Hard Milling (63 HRC)

- Comparing: ARC and LACS ${ }^{\circledR}$ with sputtering references
- HIPIMS and ARC on a similar performance level in this test
- Lowest wear for the LACS ${ }^{\circledR}$ coating: BorCO ${ }^{4 ®}$

Material: Cold working steel, 1.2379 (SKD11), HRC 55, $\mathrm{a}_{\mathrm{p}}=0.2 \mathrm{~mm}, \mathrm{a}_{\mathrm{e}}=0.3 \mathrm{~mm}, \mathrm{v}_{\mathrm{c}}=200 \mathrm{~m} / \mathrm{min}$ Tools: LMT-Kieninger milling inserts, $z=2, f_{2}=0.2 \mathrm{~mm} /$ teeth - dry

Picture source: Mauth GmbH, Oberndorf, Germany

Dedicated Coatings Developed by/with PLATIT's Users

Hobbing Tool Life Comparison

Material: 100Cr6 800-900 N/mm2 - Tools: HSS-PM4 - Modul $=2.5-\mathrm{vc}=150 \mathrm{~m} / \mathrm{min}$ Developed by Liss, Roznov, Czech Republic

Thread forming

Tool Life Comparison

Work piece materials: Materials with high strength Developed with LMT Fette, Schwarzenbek, Germany Source: Werkzeugtechnik: 117 - Nov/2010 - p. 71

Tapping

Tool Life Comparison

ТНАТіт:

Applications

Mold and Die Milling

Work piece material: cold working steel - $\mathrm{Rm}=1000 \mathrm{~N} / \mathrm{mm}^{2}$ - Insert: WPR 16 AR - vc $=240 \mathrm{~m} / \mathrm{min}$ $\mathrm{n}=4775 \mathrm{1} / \mathrm{min}-\mathrm{fz}=0.4 \mathrm{~mm}-\mathrm{vf}=3820 \mathrm{~mm} / \mathrm{min}-\mathrm{ap}=1.5 \mathrm{~mm}-\mathrm{ae}=1.0 \mathrm{~mm}$

Developed with LMT Kieninger, Lahr, Germany
Fine Blanking
Comparative Analysis (SEM) after 30'000 Strokes

Coating detached, maintenance urgently needed.

Element requires
preventive maintenance.

Dedicated TripleCoating ${ }^{3{ }^{\text {e }}}$ based on $\mathrm{AlCrN}^{3}{ }^{\circ}$

Element can continue in service.

Source: Feintool, Lyss, Switzerland

Injection Molding

Wear Comparison

Molds for aluminum alloys for automotive industry after the fabrication of 15000 parts

Plasma nitrided tool

Coated tool by ALLWIN, Cr-Al-Si based coating Thickness: 2 to $3 \mu \mathrm{~m}$

Dedicated Coatings Developed by/with PLATIT's Users

Wear Comparison at Hobbing with PM-HSS Tools

Mat.: 20MnCrB5 - Tool: PM-HSS - m=2.7-Down hill milling - vc $=220 \mathrm{~m} / \mathrm{min}-\mathrm{fa}=3.6 \mathrm{~mm}-\mathrm{dry}$
Source: IFO Magdeburg in the development project LMT-Fette - PLATIT
The patented Nanosphere coating is a result of a common development project, exclusively for LMT-Fette

Crater Wear Comparison at Hobbing with PM-HSS Tools

Mat.: 20MnCrB5-Tool: PM-HSS - $\mathrm{m}=2.7$ Down hill milling - $\mathrm{vc}=220 \mathrm{~m} / \mathrm{min}-\mathrm{fa}=3.6 \mathrm{~mm}-\mathrm{dry}$ Source: IFQ Magdeburg in the development project LMT-Fette - PLATIT

Technological Comparison at Hobbing with Solid Carbide Tools

Mat.: 16MnCr5-Tool: Solid carbide K30-m=3-b=40.5 mm-z=27
$\mathrm{f}=2.0-2.1 \mathrm{~mm}$ - wet cooling with emulsion Source: Fette-LMT - Industry test at German car manufacturer

ТНАТіт:

Applications

Milling
 Tool Life in Hot Working Steel

Form Milling
Tool Life Comparison

Carbide End Mills Ø10mm, z=4, steel 34CrNiMo6 (30 HRC), Coolant: MQL; Minimum lubrication - Tested tools: 2×4 Source: Carmex, Maalot, IL

Hard Turning using Coated CBN-Inserts with Special Adhesion Structure for nACo ${ }^{3 \ominus}$

PLATIT 's DLC-Coatings

Diamond-Like Carbon (DLC) is a metastable form of amorphous carbon containing a significant fraction of sp^{3} bonds. It can have high mechanical hardness, chemical inertness, optical transparency, smooth surface and low friction behavior.

Since their initial discovery in the early 1950s, DLC films have emerged as one of the most valuable engineering materials for various industrial applications, including microelectronics, optics, manufacturing, transportation, and biomedical fields. In fact, during the last two decades or so, DLC films have found uses in everyday devices ranging from razor blades to magnetic storage media.

Instead of using the term DLC, the term amorphous carbon is favored, to avoid the mix-up with diamond coatings, which are by definition crystalline.
These amorphous carbon coatings are classified into seven categories:

a-C	hydrogen-free amorphous carbon
ta-C	tetrahedral-bonded hydrogen-free amorphous carbon
a-C:Me	metal-doped hydrogen-free amorphous carbon (Me= W, Ti)
a-C:H	hydrogen-containing amorphous carbon
ta-C:H	tetrahedral-bonded hydrogen-containing amorphous carbon
a-C:H:Me	metal-doped hydrogen-containing amorphous carbon (Me=W, Ti)
a-C:H:X	modified hydrogen-containing amorphous carbon $(\mathrm{X}=\mathrm{Si}, \mathrm{O}, \mathrm{N}, \mathrm{F}, \mathrm{B})$

PLD: Pulsed Laser Deposition - FCVA: Filtered Cathodic Vacuum Arc - MS: Magnetron Sputtering - RS: Reactive Sputtering - PECVD: Plasma Enhanced Chemical Vapor Deposition - HPD: High Plasma Density

Simplified Overview of Thermal Stability Limits of Different Categories of Hard Carbon Materials

Coating of punches with $\operatorname{DLC}{ }^{2}$ in the $\pi 111$

[^2]
Applications with DLC-Coatings

Punches with nACVIc ${ }^{2 \infty}$

Tool holder chuck coated with nACVIc ${ }^{28}$

Thread former for TETRA Pak ${ }^{\oplus}$, made from copper, coated with $\mathrm{cVIc}^{2 \theta}$

PET-Core with ALLVIc ${ }^{2 \theta}$

Water pump shaft coated with CROMVIc ${ }^{2 \boldsymbol{1}}$

Fluteless thread former with CROMTIVIc ${ }^{2 ®}$

Injection mold coated with nACVIc ${ }^{\circledR}$

Camshaft with CROMVIc ${ }^{2 \otimes}$

Valves of a racing car coated with Fǐ-VIc ${ }^{\circledR}$

Uncoated and coated turbine blade with $\mathrm{F}_{\mathrm{I}}-\mathrm{VIc}^{2 \theta}$

Machine parts coated with CROMVIc ${ }^{28}$

Sewing machine part coated with CROMTIVIc ${ }^{28}$

PLATIT 's DLC-Coatings

The goals of PLATIT's development of DLC-coatings

- The combination of the extremely good features of PLATIT's conventional and Nanocomposite coatings (especially of the outstanding adhesion) with the advantages of the DLC-coatings (like smoothest surface and low coefficient of friction).
- Deposition of double coatings, (PVD and DLC-coatings) in one chamber in one batch
- Profitable coating production with DLC even in small series, for:
- high quality machine components - medical devices - aerospace components
- cutting tools for composite materials with affinity for sticking - molds and dies and punches

Comparison of the most important features of PLATIT's DLC-coatings

	$1^{\text {st }}$ generation	$2{ }^{\text {nd }}$ generation	$3^{\text {rd }}$ generation
Name	DLC ${ }^{1}$ (CBC) - X-VIc ${ }^{\text {® }}$	DLC ${ }^{2}$ - X-VIc ${ }^{\text {2® }}$	DLC ${ }^{3}$ - X-VIc ${ }^{\text {3® }}$
Availability	Basis coating + DLC'	Recommended as top coating Basis coating + DLC ${ }^{2}$	Basis coating + DLC ${ }^{3}$ for non-carbide Also without basis coating for carbide
Most common coatings	cVIc ${ }^{1 ®}$	$\begin{aligned} & \mathrm{VIc}^{2 \otimes}, \mathrm{cVIc}^{2 \Phi}, \mathrm{CROMVIc}^{2 \Phi}, \\ & \mathrm{CROMTVIc}^{2 \oplus}, \mathrm{nACVIc}^{2 \Theta} \end{aligned}$	$\mathrm{VIc}^{3 ®}, \mathrm{cVIc}^{3 ®}, \mathrm{CROMVIc}{ }^{3 ®}$
Coating process	PVD	PVD+PECVD	PVD, filtered ARC
Deposition temperature	200-500 ${ }^{\circ} \mathrm{C}$	200-500 ${ }^{\circ} \mathrm{C}$	$<200^{\circ} \mathrm{C}$
Composition	a-C:H:Me - Metal doped DLC	a-C:H:Si - Silicon doped metal free DLC	ta-C - Hydrogen-free DLC
Heat resistance	$<400^{\circ} \mathrm{C}$	$<450^{\circ} \mathrm{C}$	$<450^{\circ} \mathrm{C}$
Internal stress	medium	lower due to Si	high
Typical thickness	up to $3 \mu \mathrm{~m}$	up to $3 \mu \mathrm{~m}$	up to $1 \mu \mathrm{~m}$
Electrical conductivity	good	none	none
Hardness	$<20 \mathrm{GPa}$	$<25 \mathrm{GPa}$	$>50 \mathrm{GPa}$
Roughness	$\mathrm{Ra} \sim 0.1 \mu \mathrm{~m}-\mathrm{Rz} \sim$ coating thickness	$\mathrm{Ra} \sim 0.03 \mu \mathrm{~m}-\mathrm{Rz} \sim$ coating thickness	Ra $\sim 0.02 \mu \mathrm{~m}-\mathrm{Rz} \sim$ coating thickness
Friction coefficient to steel	$\mu \sim 0.15$	$\mu \sim 0.1$	$\mu \sim 0.1$
Wear resistance	Wear through after a short time	Wear through after a long time	Wear through after an extra long time
Main application goal	Improvement of tool's run-in behavior Lubrication by forming transfer films	Reducing friction for machine components, molds and dies	Cutting light metals, composites and graphite

TLTTIT吴

Chemical Properties of DLC ${ }^{2}$ of PLATIT

RAMAN Spectroscopy of CROMVIC2® with $\mathrm{I}=514.5 \mathrm{~nm}$, Si calibrated, Labspec Software G-band position: $1552.9 \mathrm{~cm}^{-1}$ - D-band position: $1382.8 \mathrm{~cm}^{-1}$ - Ratio IG/ID $=0.85$ Measured at Physics Department, Fribourg University, Switzerland

Adhesion measured by scratch-test: CROMVIc $^{2 \otimes}$ on carbide; $\mathrm{L}_{\mathrm{c} 2}=74.3 \mathrm{~N}$

Surface roughness measured by AFM: CROMVIc $^{2 \varnothing}$ on carbide: $\mathbf{S}_{\mathrm{a}}=0.0374 \boldsymbol{\mu m}$

Sa $=0.0374 \mu \mathrm{~m}$	
Sq	$=0.0501 \mu \mathrm{~m}$
Sp	$=0.447 \mu \mathrm{~m}$
Sv	$=0.136 \mu \mathrm{~m}$
St	$=0.583 \mu \mathrm{~m}$
Ssk	$=1$
Sku	$=9.34$
Sz	$=0.282 \mu \mathrm{~m}$

Nanoindentation for Measuring Hardness of DLC ${ }^{2}$ Coatings

Berkovich Indenter

Method: Oliver \& Pharr
Approach speed: $2000 \mathrm{~nm} / \mathrm{min}$ Acquisition rate: 10 Hz Linear loading Max. load: 70 mN Loading rate: $70 \mathrm{mN} / \mathrm{min}$

Main results:
$\mathrm{HIT}=25444 \mathrm{Mpa}$
$\mathrm{EIT}=331.99 \mathrm{Gpa}$
$H v=2356.4$ Vickers

Friction Behavior of DLC ${ }^{2}$ Coatings

Milling

Segmented TiB ${ }_{2}$-cathode for SCIL ${ }^{\oplus}$-Technology

Comparison of the built up edges at aluminum cutting

(X)EDX- detection frequency of the respective element: $\operatorname{LL}^{3 \oplus}$ deposited by $\pi 211$

SEM and EDX after 283 m tool life Material: 3.4365 AIZnMgCu1,5 - Tool: Torus end mill $\varnothing 12 \mathrm{~mm}-r=2.5 \mathrm{~mm}-\mathrm{z}=2$ $\mathrm{vc}=377 \mathrm{~m} / \mathrm{min}-\mathrm{ae}=5 \mathrm{~mm}-\mathrm{ap}=6 \mathrm{~mm}-\mathrm{fz}=0.2 \mathrm{~mm} / \mathrm{rev}$

Measuring of the Coefficient of Friction by Pin on Disc Test at $400^{\circ} \mathrm{C}$: $\mathrm{nACVIc}{ }^{28}: \mu=0.12 \pm 0.02$

Pin on disc wear test with Ti pin grade $5-\mathrm{r}=10[\mathrm{~mm}]$ - Normal load : $2[\mathrm{~N}]$ - Lin. Speed : $6.67[\mathrm{~cm} / \mathrm{s}]$ - Acquisition rate : $2[\mathrm{~Hz}]$ - Rel. humidity: 0%
Coefficient of Friction Measurement by Pin-on-Disc Wear Test at $400^{\circ} \mathrm{C}$

DLC² Coating in High Performance Racing Engines

Demanding Engine Applications for Racing Cars

$1 \rightarrow$ Mechanical lifter (M2 steel, 63-64 HRC)
Contact partner: tool steel camshaft with case hardened lobes

- No material transfer to the foot
- Low friction and high wear resistance
$2 \rightarrow$ Intake valve (Ti alloy)
Contact partner: AMCO45, Ni-Al Bronze alloy
- No material transfer to the seat
- Low friction on the stem
$3 \rightarrow$ Wrist pin (PM-HSS)
Contact partner: tool steel
- No material transfer
- Very low friction and low wear

V8 engine, up to 9'000 RPMs, 750 HP

Coating Evaluation After Bench Test

DLC ${ }^{2}$ Thickness Distribution on Valve Shanks for Racing Cars, Deposited in $\pi 80+$ DLC Unit
One of the most important applications is the DLC-coating of valves for the racing and normal road cars, trucks and bikes.

Using DLC Coatings in Small and Medium Size Industries

Micro Drilling in Titanium

Tool Life Comparison

Minimizing of Wear and Friction at Extrusion

Manufacturing of
case-parts from
aluminum through
extrusion aluminum-parts

Result:

- DLC containing Si show very good tool life behavior

Source: Coexal Werkzeugbau, Gotha
GFE, Schmalkalden, Germany

Minimizing of Wear and Friction at Deep Drawing

TLNTT®

Cutting Sticky Materials with DLC ${ }^{2}$ and DLC ${ }^{3}$

Tapping in Titanium

Tool Life Comparison

Coating: DLC ${ }^{3}=C r$-based ta-C - Workpiece material: printed circuit board $-n=140^{\prime} 000$ RPM
Source: Topoint, Taipei, Taiwan
Comparison of Cutting Torque with TiCN ${ }^{2}$ and CROMTIVIc ${ }^{2}$

Built-Up Edges at Dry Milling of Soft Aluminum Alloys With Different Coatings

The main target of the DLC ${ }^{3}$ coating is to offer an economical alternative for expensive PCD-tools and CVD-diamond coatings.

CVD-Diamond
TiB_{2}
DLC3 (ta-C)
cVIc^{1}

Work piece material: AIMg4.5Mn - Tool: Solid carbide end mill $d=8 m m-v_{c}=250 \mathrm{~m} / \mathrm{min}-f_{2}=0,16 \mathrm{~mm}-a_{p}=5 \mathrm{~mm}$ - dry - Source: GFE Schmalkalden, Germany

Why Integrate Coating in Small \& Medium Sized Enterprises?

What is Important for the Users of Coatings?

or

The Most Important Reasons for In-House Coating

Independence

Full Production in one's own hand
With the own coating unit the tool maker is independent and can influence and warranty the performance of his product in full.
"Thanks to my flexible, complete tool production with integrated coating, I can more than a match for big companies!" M. Mauth, Oberndorf, Germany

Delivery Time

The short delivery time is extremly important, the A and 0 nowadays. With the own coating unit, tool maker can produce special tools in one day, included grinding and coating.

Minimal Packaging and Transport

$8-15 \%$ of the tools will be damaged by the double transport to and from the job coaters.

Quality

The best job coater can not deposit the optimum coating for every tool. Among other things basically not because he can not prduce the optimum coating thickness for the different mixed tools in his usually big chamber, see page 93.

Price / Business

The return of investment is around 1.5-2.5 years, see page 131.

Innovative, Dedicated own Coatings, Brands, Colors

The tool maker can adapt the coating to his tool geometry, see pages 118-125.

Wide, Flexible Coating Spectrum

SME should be able to coat very different coatings every day, see page 78-93.

Economics - When should an SME change to integration?

Cash Flow Difference at Leasing of Small and Medium Size Coating Machines

- Investment calculated with coating unit, recipes, cathodes, basic holders, PVD accessories, cleaning system, quality control system
- Shifts per day: 1
- Leasing rate / month calculated with 4\%
- Variable costs: energy, target, gas, water, detergents
- Fix costs: Ioan (credit), labour, social. rental costs and depreciation
- The costs which arise in case of job coating within a tooling company from transportation, repeated packaging, handling, rejected deliveries and damages are NOT considered.

Total Costs / Batch [CHF]

Valid for mixed tool spectrum, see page 40

Total Costs / Tool [CHF]

Target Costs / Batch [CHF] Target Costs / Tool [CHF]

Valid for mixed tool spectrum, see page 40

Valid for $\varnothing 10 \mathrm{~mm}$ end mills

World Wide Service

 Service Concept
Remote Diagnostics and Online Control

- Fast and secure online connection between PLATIT and customers worldwide
- Firewall protection should be installed by user's IT
- Remote and on-site diagnostics of all components and processes with graphical trace files
- Most recommended software for remote control and diagnostics: Teamviewer
- Remote diagnostics only possible with user's assistance

Standardized scopes of supply and services. PLATIT ${ }^{\circledR}$ recommends frequent services every 6 months.

Options

(0)

Customized Service

Maintenance Option 1

Maintenance Option 2

Production Optimization

Official PLATIT Service Label

Each serviced unit is identified by a service label, which includes a link that leads the user to the PLATIT service database.

This database describes all carried out services and indicates upcoming recommended maintenance work.

PLATIT Augmented Reality Support The New Service

PARS ${ }^{\circledR}$-Service Process:

- The PLATIT machine user signs a service agreement with PARS ${ }^{\circledR}$-option.
- The coating unit needs to have a fast internet connection (> $5 \mathrm{Mbit} / \mathrm{s}$).
- In a service incident the operator connects the unit and PARS ${ }^{\circledR}$-glasses to the internet.
- The operator puts on the PARS ${ }^{\circledR}$-glasses and looks at the problem with the service-technician online.
- The service-technician marks the critical area on his computer screen, which also appears in the operator's glasses. He guides the operator with audible and visual suggestions on how to solve the problem.

Advantages of the PARS ${ }^{\circledR}$-Service

- Worldwide presence without travel
- Shortest reaction time from 7:00 AM to 3:30 PM (CET)
- Saving of travel expenses
- Saving of labour costs
- Increase of service availability
- Reduction of production downtime

ТนАТітє:

The Virtual Service-Technician in Action

Example case

10:00 AM
Alarm at the customer site

10:05 AM

The operator contacts the PLATIT hotline, establishes internet connection, and a support session:

- Using the PARS -glasses for his view and
- TeamViewer for the coating unit.

10:10 AM

The service-technician on duty reviews the problem and trendfiles of the interupted process through TeamViewer.
10.15 Uhr

The operator and service-technician look at the machine through the operators PARS ${ }^{\text {- }}$ glasses.
The service-technician recognizes, that a cathode's striker is stuck. He marks the problem on his screen, which also appears in the PARS ${ }^{\circledR}$-glasses.

10.25 AM

The operator resolves the problem, the production can continue. The virtual technician has avoided:

- travel,
- production downtime, and therefore
- thousands of $€$ in cost.

Cathode Exchange Centers 들ㄹㄹ․

Customer with PLATIT equipment

PLATIT's Cathode

Exchange Centers (CEC):

- Sumperk, Czech Republic (EU)
- Libertyville, IL, USA
- Seoul, South Korea
- Curitiba, Brazil
- Shanghai, China
- Moscow, Russia

Stock of cathodes:
LARC ${ }^{\circledR}$:

- Ti
- Cr
- AlCr_{30}
- AI
- Zr
- AlCr_{45}
- AlSi_{06}
- TiAl_{50}
- TiSi ${ }_{20}$
- AlSi_{12}
- AlTi_{33}
- CrTi_{15}
CERC ${ }^{\circledR}$:
- AlTi_{33}
- AlCr_{30}

Type of cathodes depending on the machines types:
$\pi 80 / \pi^{300} / \pi^{321}$: short
e.g. Ti-short π^{201} / π^{6027} : long e.g. Ti-long $\pi^{\text {P17PLUs }} / \pi^{\text {C87TPLUs }}: ~ p l u s$
e.g. Ti-plus

SCIL ${ }^{\circledR}$-Cathodes:

- Ti-SCIL ${ }^{\circledR}$
- TiAl_{50} SCIL $^{\circledR}$
- $\mathrm{AICr}_{30} \mathrm{SCIL}^{\oplus}$
- $\mathrm{B}_{\mathrm{x}}-\mathrm{SCIL}^{\circledR}$
- $\mathrm{TiB}_{2}-\mathrm{SCIL}^{\circledR}$
- W-SCIL ${ }^{\oplus}$

Technical Process of Target Exchange in CEC

8. Burning in under production conditions
9. Stock of refurbished cathodes
10. Incoming of the used cathode 2. Disassembly, recycling of the used target
11. Replacing wear parts, setting of mechanical elements and the magnetic field

5. Writing of the cathode's identification chip

4. Long time test of the mechanical functions

Advantages for the Users by PLATIT's Cathode Exchange Principle and Centers

- PLATIT's warranty for exchange quality
- No stocking costs for the users
- Cathodes are renewed by CEC at every change to state of the art
- All wear parts are new after every change by CEC
- Cathodes are long-time vacuum tested at CEC after every change
- Optimum setting and burn in by CEC
- User just quickly changes the cathodes - no setting, no weighing, no burn in by user
- Minimum transport costs and duties around the world
- Always high quality target material
- Environment friendly recycling of used target material by CEC
- Low target costs (see figure)
- The CEC system has been working at high

World Wide Service

Training Programs

Training Certificate

Installation Training

The installation trainings are carried out by our service team on location of our users.

Training on Demand

Our project engineers give dedicated trainings on a wide range of subjects from the basics to special fields.

Advanced Training

The advanced trainings take place on location of the user, or in our headquarters by our project engineers or our R\&D people, typically for the installation of dedicated coatings.

Sales Partners and Agencies

Subsidiaries

HOTLINE

service π－units ールニアiTE：

World Wide Service

Available through website www．platit．com

SWITZERLAND

 PLATIT AG CCS DivisionProduction Vaulruz
Route de Champ－Paccot 21
CH－1627 Vaulruz
Phone：＋41（32） 5446290
E－Mail：ccs＠platit．com
SCANDINAVIA
PLATIT Scandinavia ApS
Universitetsparken 7 ／PO Box 30
DK－4000 Roskilde

Phone：$\quad+45$（46） 740238
E－Mail：scandinavia＠platit．com
SOUTH KOREA
PLATIT Support Center
2F Geumyoung B／D 36， 501 Beon－Gil
Youngtong－Ro Suwon City
Gyeongi－do South Korea 443－809
Phone：
＋82（31） 447 4395－6
E－Mail：korea＠platit．com

[^0]: *: In development.

[^1]: Source: lepco AG, Höri, Switzerland

[^2]: Source: K. Holmberg, A. Matthews, Coatings Tribology, Elsevier, 2007

